Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5

Abstract

The intestinal cell types responsible for defense against pathogenic organisms remain incompletely characterized. Here we identify a subset of CD11chiCD11bhi lamina propria dendritic cells (LPDCs) that expressed Toll-like receptor 5 (TLR5) in the small intestine. When stimulated by the TLR5 ligand flagellin, TLR5+ LPDCs induced the differentiation of naive B cells into immunoglobulin A–producing plasma cells by a mechanism independent of gut-associated lymphoid tissue. In addition, by a mechanism dependent on TLR5 stimulation, these LPDCs promoted the differentiation of antigen-specific interleukin 17–producing T helper cells and type 1 T helper cells. Unlike spleen DCs, the LPDCs specifically produced retinoic acid, which, in a dose-dependent way, supported the generation and retention of immunoglobulin A–producing cells in the lamina propria and positively regulated the differentiation interleukin 17–producing T helper cells. Our findings demonstrate unique properties of LPDCs and the importance of TLR5 for adaptive immunity in the intestine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four subsets of CD11c+ LPCs in the small intestine.
Figure 2: CD11chiCD11bhi LPDCs specifically express TLR5.
Figure 3: CD11chiCD11bhi LPDCs induce IgA+ plasma cell differentiation.
Figure 4: Function of retinoic acid released by CD11chiCD11bhi LPDCs in IgA synthesis.
Figure 5: TLR5-dependent TH-17 cell differentiation by CD11chiCD11bhi LPDCs.
Figure 6: TLRs are essential for CD11chiCD11bhi LPDC–mediated immune responses.

Similar content being viewed by others

References

  1. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Kelsall, B.L. & Leon, F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 206, 132–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Bilsborough, J., George, T.C., Norment, A. & Viney, J.L. Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481–492 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asselin-Paturel, C., Brizard, G., Pin, J.J., Briere, F. & Trinchieri, G. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J. Immunol. 171, 6466–6477 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Iwasaki, A. & Kelsall, B.L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Mora, J.R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Coombes, J.L. & Maloy, K.J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin. Immunol. 19, 116–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Annacker, O. et al. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051–1061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacPherson, G.G., Jenkins, C.D., Stein, M.J. & Edwards, C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J. Immunol. 154, 1317–1322 (1995).

    CAS  PubMed  Google Scholar 

  12. Jang, M.H. et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176, 803–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denning, T.L., Wang, Y.C., Patel, S.R., Williams, I.R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17–producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Abreu, M.T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7, 868–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Pavli, P., Woodhams, C.E., Doe, W.F. & Hume, D.A. Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria. Immunology 70, 40–47 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. van Egmond, M. et al. IgA and the IgA Fc receptor. Trends Immunol. 22, 205–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, K., Ha, S.A., Tsuji, M. & Fagarasan, S. Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin. Immunol. 19, 127–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Tseng, J. Transfer of lymphocytes of Peyer's patches between immunoglobulin allotype congenic mice: repopulation of the IgA plasma cells in the gut lamina propria. J. Immunol. 127, 2039–2043 (1981).

    CAS  PubMed  Google Scholar 

  23. Tseng, J. A population of resting IgM-IgD double-bearing lymphocytes in Peyer's patches: the major precursor cells for IgA plasma cells in the gut lamina propria. J. Immunol. 132, 2730–2735 (1984).

    CAS  PubMed  Google Scholar 

  24. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, K., Meek, B., Doi, Y., Honjo, T. & Fagarasan, S. Two distinctive pathways for recruitment of naive and primed IgM+ B cells to the gut lamina propria. Proc. Natl. Acad. Sci. USA 102, 2482–2486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kunisawa, J. et al. Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood 109, 3749–3756 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Macpherson, A.J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–933 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kang, H.S. et al. Signaling via LTβR on the lamina propria stromal cells of the gut is required for IgA production. Nat. Immunol. 3, 576–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hieshima, K. et al. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J. Immunol. 173, 3668–3675 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Elias, K.M. et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111, 1013–1020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schambach, F., Schupp, M., Lazar, M.A. & Reiner, S.L. Activation of retinoic acid receptor-α favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur. J. Immunol. 37, 2396–2399 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Viney, J.L., Mowat, A.M., O'Malley, J.M., Williamson, E. & Fanger, N.A. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J. Immunol. 160, 5815–5825 (1998).

    CAS  PubMed  Google Scholar 

  43. Williamson, E., Westrich, G.M. & Viney, J.L. Modulating dendritic cells to optimize mucosal immunization protocols. J. Immunol. 163, 3668–3675 (1999).

    CAS  PubMed  Google Scholar 

  44. Macpherson, A.J. & Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Niess, J.H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Chieppa, M., Rescigno, M., Huang, A.Y. & Germain, R.N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Kitagaki for technical assistance; T. Kawai and C. Coban for discussions; and A. Shigeta and M. Matsumoto for the distribution of OT-II-transgenic mice. Il6−/− mice (C57BL/6) were provided by M. Kopf (Swiss Federal Institute of Technology), and OT-II transgenic mice (C57BL/6) were provided by W.R. Heath (The Walter and Eliza Hall Institute of Medical Research). Supported by the Ministry of Education, Culture, Sports, Science and Technology in Japan (S.A.), the Ministry of Health, Labour and Welfare in Japan (S.A.), the 21st Century Center of Excellence Program of Japan (S.A.), the World Premier International Research Center (S.A.) and the National Institutes of Health (AI070167 to S.A.).

Author information

Authors and Affiliations

Authors

Contributions

K.F. and S.U. did most of the experiments; S.U., K.J.I. and M.H.J. designed all the experiments; B.-G.Y. helped with the immunohistochemical analysis; Y.-J.J. and M.N. helped to isolate cells; S.S., T.T. and M.Y. provided advice for the experiments; Y.Y. provided Id2−/− mice; H.K. and M.M. provided advice for the experiments and manuscript; S.U. and S.A. prepared the manuscript; and S.A. directed the research.

Corresponding author

Correspondence to Shizuo Akira.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 3389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uematsu, S., Fujimoto, K., Jang, M. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9, 769–776 (2008). https://doi.org/10.1038/ni.1622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing