Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of a strong magnetic field using uniform heat flux at the surface of the core

Abstract

The Earth’s main magnetic field is thought to be generated by motions in the planet’s fluid outer core, which lead to an effect similar to that of a dynamo1,2,3. Recent high-resolution numerical simulations produce only a non-dipolar4 or a dipolar but comparatively weak magnetic field5,6 unlike that of the Earth. Older models that did generate a strong, Earth-like field needed to use unrealistically high viscosities for the core fluid7,8,9,10. Common to most of the models is the assumption of a laterally uniform core-surface temperature. Here we use a low-viscosity geodynamo model to evaluate the effect of a different and more realistic boundary condition—a uniform heat flux at the surface of the core—on the simulation of an Earth-like magnetic field. Our results show that when the surface temperature is laterally uniform, only a weak magnetic field is generated because planetary-scale fluid circulations are suppressed. In contrast, a laterally uniform heat flux at the core’s surface leads to large-scale convective flows, and a comparatively strong dipole-type magnetic field. Contrary to previous work11,12, we suggest that thermal conditions at the core surface have a strong effect on low-viscosity geodynamo models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Snapshots of velocity and magnetic field.
Figure 2: Time-averaged structures of velocity and magnetic field.

Similar content being viewed by others

References

  1. Buffett, B. A. Earth’s core and the geodynamo. Science 288, 2007–2012 (2000).

    Article  Google Scholar 

  2. Kono, M. & Roberts, P. H. Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40, 1013 (2002).

    Article  Google Scholar 

  3. Braginsky, S. I. & Roberts, P. H. Equations governing convection in the Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995).

    Article  Google Scholar 

  4. Kageyama, A., Miyagoshi, T. & Sato, T. Formation of current coils in geodynamo simulations. Nature 454, 1106–1109 (2008).

    Article  Google Scholar 

  5. Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006).

    Article  Google Scholar 

  6. Takahashi, F., Matsushima, M. & Honkura, Y. Scale variability in convection-driven MHD dynamos at low Ekman number. Phys. Earth Planet. Inter. 167, 168–178 (2008).

    Article  Google Scholar 

  7. Glatzmaier, G. A. & Roberts, P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

    Article  Google Scholar 

  8. Kageyama, A. et al. Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas 2, 1421–1431 (1995).

    Article  Google Scholar 

  9. Kuang, W. & Bloxham, J. An Earth-like numerical dynamo model. Nature 389, 371–374 (1997).

    Article  Google Scholar 

  10. Takahashi, F., Matsushima, M. & Honkura, Y. Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth Simulator. Science 309, 459–461 (2005).

    Article  Google Scholar 

  11. Busse, F. H. & Simitev, R. D. Parameter dependences of convection-driven dynamos in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 100, 341–361 (2006).

    Article  Google Scholar 

  12. Kutzner, C. & Christensen, U. R. From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Inter. 131, 29–45 (2002).

    Article  Google Scholar 

  13. Braginsky, S. I. & Roberts, P. H. Encyclopedia of Geomagnetism and Paleomagnetism (Springer, 2007).

    Google Scholar 

  14. Glatzmaier, G. A., Coe, R. S., Hongre, L. H. & Roberts, P. H. The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999).

    Article  Google Scholar 

  15. Christensen, U. R. & Olson, P. Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys. Earth Planet. Inter. 138, 39–54 (2003).

    Article  Google Scholar 

  16. Finlay, C. C. & Jackson, A. Equatorially dominated magnetic field change at the surface of Earth’s core. Science 300, 2084–2086 (2003).

    Article  Google Scholar 

  17. Bloxham, J. The expulsion of magnetic flux from the Earth’s core. Geophys. J. R. Astron. Soc. 87, 669–678 (1986).

    Article  Google Scholar 

  18. Olson, P., Christensen, U. R. & Glatzmaier, G. A. Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration. J. Geophys. Res. 104, 10383–10404 (1999).

    Article  Google Scholar 

  19. Kageyama, A. & Sato, T. Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys. Rev. E 55, 4617–4626 (1997).

    Article  Google Scholar 

  20. Sparrow, R. J., Goldstein, R. J. & Jonsson, V. K. Thermal instability in a horizontal fluid layer: Effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513–528 (1964).

    Article  Google Scholar 

  21. Hurle, D. T. J., Jakeman, E. & Pike, E. R. On the solution of the Bénard problem with boundaries of finite conductivity. Proc. R. Soc. Lond. A 296, 469–475 (1967).

    Article  Google Scholar 

  22. Takehiro, S., Ishiwatari, M., Nakajima, K. & Hayashi, Y. Linear stability of thermal convection in rotating systems with fixed heat flux boundaries. Geophys. Astrophys. Fluid Dyn. 96, 439–459 (2002).

    Article  Google Scholar 

  23. Roberts, P. H. On the thermal instability of a rotating fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A 263, 93–117 (1968).

    Article  Google Scholar 

  24. Sakuraba, A. Linear magnetoconvection in rotating fluid spheres permeated by a uniform axial magnetic field. Geophys. Astrophys. Fluid Dyn. 96, 291–318 (2002).

    Article  Google Scholar 

  25. Roberts, P. H. Kinematic dynamo models. Phil. Trans. R. Soc. Lond. A 272, 663–698 (1972).

    Article  Google Scholar 

  26. Aubert, J. Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 53–67 (2005).

    Article  Google Scholar 

  27. Fearn, D. R. Thermal and magnetic instabilities in a rapidly rotating sphere. Geophys. Astrophys. Fluid Dyn. 14, 103–126 (1979).

    Article  Google Scholar 

  28. Christensen, U. R., Holzwarth, V. & Reiners, A. Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009).

    Article  Google Scholar 

  29. Nakagawa, T. & Tackley, P. J. Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection. Earth Planet. Sci. Lett. 271, 348–358 (2008).

    Article  Google Scholar 

  30. Sakuraba, A. & Kono, M. Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105–121 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

Numerical simulations were carried out at the Earth Simulator Center, Yokohama, Japan. A.S. was supported by a grant-in-aid from Yamada Science Foundation. P.H.R. thanks NSF for partial support.

Author information

Authors and Affiliations

Authors

Contributions

A.S. constructed the model, carried out numerical analyses and prepared the manuscript. P.H.R. helped with the model and the manuscript.

Corresponding author

Correspondence to Ataru Sakuraba.

Supplementary information

Supplementary Information

Supplementary Information (PDF 282 kb)

Supplementary Information

Supplementary Movie 1 (MOV 4691 kb)

Supplementary Information

Supplementary Movie 2 (MOV 3624 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuraba, A., Roberts, P. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci 2, 802–805 (2009). https://doi.org/10.1038/ngeo643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing