Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

Abstract

Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread1. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff2. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated3, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals4,5. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron spectromicroscopy of a Tica vent aggregate showing Fe speciation and its association with C.
Figure 2: Carbon spectromicroscopy of a Tica vent aggregate showing biomolecule signatures and association with Fe.

Similar content being viewed by others

References

  1. German, C. R. & von Damm, K. L. Hydrothermal processes. Treatise Geochem. 6, 181–222 (2004).

    Google Scholar 

  2. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  3. SCOR Working Group.SCOR GEOTRACES— An international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem. der Erde 67, 85–131 (2007).

  4. Bennett, S. A. et al. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet. Sci. Lett. 270, 157–167 (2008).

    Article  Google Scholar 

  5. Sander, S. G. et al. Organic complexation of copper in deep-sea hydrothermal vent systems. Environ. Chem. 4, 81–89 (2007).

    Article  Google Scholar 

  6. Feely, R. A. et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. J. Geophys. Res. 92, 11347–11363 (1987).

    Article  Google Scholar 

  7. German, C. R., Campbell, A. C. & Edmond, J. M. Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes. Earth Planet. Sci. Lett. 107, 101–114 (1991).

    Article  Google Scholar 

  8. Field, M. P. & Sherrell, R. M. Dissolved and particulate Fe in a hydrothermal plume at 945′ N, East Pacific Rise: Slow Fe(II) oxidation kinetics in Pacific plumes. Geochim. Cosmochim. Acta 64, 619–628 (2000).

    Article  Google Scholar 

  9. Statham, P. J., German, C. R. & Connelly, D. P. Iron(II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean. Earth Planet. Sci. Lett. 236, 588–596 (2005).

    Article  Google Scholar 

  10. Cowen, J. P., Massoth, G. J. & Baker, E. T. Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322, 169–171 (1986).

    Article  Google Scholar 

  11. Shock, E. L. & Schulte, M. D. Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res. 103, 28513–28527 (1998).

    Article  Google Scholar 

  12. Chan, C. S. et al. Microbial polysaccharides template assembly of nanocrystal fibers. Science 303, 1656–1658 (2004).

    Article  Google Scholar 

  13. Toner, B. et al. Spatially resolved characterization of biogenic manganese oxide production within the biofilm of Pseudomonas putida strain MnB1. Appl. Environ. Microbiol. 71, 1300–1310 (2005).

    Article  Google Scholar 

  14. Moffett, J. W., Goepfert, T. J. & Naqvi, S. W. A. Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep-Sea Res. 54, 1341–1349 (2007).

    Article  Google Scholar 

  15. Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Article  Google Scholar 

  16. Martell, A. E. & Smith, R. M. Critical Stability Constants Vol. 3: Other Organic Ligands (Plenum Press, 1989).

    Google Scholar 

  17. Ciglenecki, I. et al. The role of reduced sulfur species in the coalescence of polysaccharides in the Adriatic Sea. Mar. Chem. 71, 233–249 (2000).

    Article  Google Scholar 

  18. Feely, R. A., Gendron, J. F., Baker, E. T. & Lebon, G. T. Hydrothermal plumes along the East Pacific Rise, 840 to 11o50: Particle distribution and composition. Earth Planet. Sci. Lett. 128, 19–36 (1994).

    Article  Google Scholar 

  19. Roth, S. E. & Dymond, J. Transport and settling of organic material in a deep-sea hydrothermal plume: Evidence from particle flux measurements. Deep-Sea Res. 36, 1237–1254 (1989).

    Article  Google Scholar 

  20. Lang, S. Q. et al. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842 (2006).

    Article  Google Scholar 

  21. Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  22. Verdugo, P. et al. The oceanic gel phase: A bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85 (2004).

    Article  Google Scholar 

  23. Engel, A. et al. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932 (2004).

    Article  Google Scholar 

  24. Chin, W.-C., Orellana, M. V. & Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572 (1998).

    Article  Google Scholar 

  25. Wakeham, S. G., Cowen, J. P., Burd, B. J. & Thomson, R. E. Lipid-rich ascending particles from the hydrothermal plume at Endeavour Segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 65, 923–939 (2001).

    Article  Google Scholar 

  26. Shackelford, R. & Cowen, J. P. Transparent exopolymer particles (TEP) as a component of hydrothermal plume particulate dynamics. Deep-Sea Res. I 53, 1677–1694 (2006).

    Article  Google Scholar 

  27. Lyle, M. W. Major element composition of Leg 92 sediments. Initial Reports of the Deep Sea Drilling Project Vol. 92, 355–370 (1986).

  28. Lupton, J. E. Hydrothermal helium plumes in the Pacific Ocean. J. Geophys. Res. 103, 15853–15868 (1998).

    Article  Google Scholar 

  29. Feely, R. A. et al. Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise. Geochim. Cosmochim. Acta 60, 2297–2323 (1996).

    Article  Google Scholar 

  30. Comtet, T. et al. Molecular and morphological identification of settlement-stage vent mussel larvae, Bathymodiolus azoricus (Bivalvia: Mytilidae), preserved in situ at active vent fields on the Mid-Atlantic Ridge. Limnol. Oceanogr. 45, 1655–1661 (2002).

    Google Scholar 

  31. Honjo, S., Dymond, J., Collier, R. & Manganini, S. J. Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res. 42, 831–870 (1995).

    Google Scholar 

  32. Hitchcock, A. P. <http://unicorn.mcmaster.ca/aXis2000.html>.

  33. Myneni, S. C. B. in Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science Vol. 49 (eds Fenter, P. A., Rivers, M. L., Sturchio, N. C. & Sutton, S. R.) (The Mineralogical Society of America and The Geochemical Society, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank D. Adams, S. Beaulieu, S. Mills, B. Govenar and T. Shank for trap deployment/collection; J. P. Cowen, K. Von Damm, A. Thurnherr (NSF Ridge 2000), L. Mullineaux, J. Ledwell and A. Thurnherr (NSF OCE BIO and PO) for cruise berths; C. S. Chan for STXM standards; and ALS BL 10.3.2 users for Fe K-edge XAS reference spectra. Financial support: NASA Postdoctoral Program (B.M.T.), NSF OCE 0425737 (K.J.E. and J.W.M.), WHOI DOEI (L. Mullineaux, O.R., C.R.G. and K.J.E.), NSF OCE 0648287 (K.J.E., C.R.G. and O.R.) and NSF OCE 0424953 (L. Mullineaux). The Advanced Light Source is supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the US Department of Energy under contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript preparation, ALS beamtime proposals and spectroscopy data collection–analysis–interpretation (B.M.T); spectroscopy data collection–analysis–interpretation (S.C.F.), inductively coupled plasma optical emission spectrometry measurements (S.J.M.); spectroscopy data collection (C.M.S.); mineralogy data analysis (M.A.M.); project planning, data interpretation and mentoring (K.J.E, C.R.G, O.R., J.W.M)

Corresponding author

Correspondence to Brandy M. Toner.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toner, B., Fakra, S., Manganini, S. et al. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geosci 2, 197–201 (2009). https://doi.org/10.1038/ngeo433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing