Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small fraction of marine cloud condensation nuclei made up of sea spray aerosol

Abstract

Sea spray aerosols impact Earth’s radiation balance by directly scattering solar radiation. They also act as cloud condensation nuclei, thereby altering cloud properties including reflectivity, lifetime and extent. The influence of sea spray aerosol on cloud properties is thought to be particularly strong over remote ocean regions devoid of continental particles. Yet the contribution of sea spray aerosol to the population of cloud condensation nuclei in the marine boundary layer remains poorly understood. Here, using a lognormal-mode-fitting procedure, we isolate sea spray aerosols from measurements of particle size and abundance over the Pacific, Southern, Arctic and Atlantic oceans to determine the contribution of sea spray aerosol to the population of cloud condensation nuclei in the marine boundary layer. On a global basis, with the exception of the high southern latitudes, sea spray aerosol makes a contribution of less than 30% to the cloud condensation nuclei population for air that is supersaturated at 0.1 to 1.0%—the supersaturation range typical of marine boundary layer clouds. Instead, the cloud condensation nuclei population between 70° S and 80° N is composed primarily of non-sea-salt sulfate aerosols, due to large-scale meteorological features that result in entrainment of particles from the free troposphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cruise tracks and dates of the seven experiments included in this analysis.
Figure 2: Fitted lognormal modes based on number size distributions measured during ICEALOT.
Figure 3: Number fraction of the lognormally fitted Aitken, accumulation and SSA modes.
Figure 4: Calculated CCN modal number fraction as a function of supersaturation and latitude.

Similar content being viewed by others

References

  1. Warneck, P. Chemistry of the Natural Atmosphere (San Diego Academic, 1988).

    Google Scholar 

  2. McInnes, L. M., Quinn, P. K., Covert, D. S. & Anderson, T. L. Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmos. Environ. 30, 869–884 (1996).

    Article  Google Scholar 

  3. Quinn, P. K. & Coffman, D. J. Local closure during ACE 1: aerosol mass concentration and scattering and backscattering coefficients. J. Geophys. Res. 103, 16575–16596 (1998).

    Article  Google Scholar 

  4. Quinn, P. K. & Coffman, D. J. Comment on “Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results” by Tegen et al. J. Geophys. Res. 104, 4241–4248 (1999).

    Article  Google Scholar 

  5. Jacobson, M. Z. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. 106, 1551–1568 (2001).

    Article  Google Scholar 

  6. Takemura, T. et al. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 15, 333–352 (2002).

    Article  Google Scholar 

  7. de Leeuw, G. et al. Production flux of sea spray aerosol. Rev. Geophys. 49, RG2001 (2011).

    Article  Google Scholar 

  8. Ovadnevaite, J. et al. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 14, 1837–1852 (2014).

    Article  Google Scholar 

  9. Tsigaridis, K., Koch, D. & Menon, S. Uncertainties and importance of sea spray composition on aerosol direct and indirect effects. J. Geophys. Res. 118, 220–235 (2013).

    Google Scholar 

  10. O’Dowd, C. D. et al. Biogenically driven organic contribution to marine aerosol. Nature 431, 676–680 (2004).

    Article  Google Scholar 

  11. Leck, C. & Bigg, E. K. Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus B 57, 305–316 (2005).

    Article  Google Scholar 

  12. Keene, W. C. et al. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. 112, D21202 (2007).

    Article  Google Scholar 

  13. Facchini, M. C. et al. Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42, 9116–9121 (2008).

    Article  Google Scholar 

  14. Quinn, P. K. & Bates, T. S. The case against climate regulation via oceanic phytoplankton sulfur emissions. Nat. Geosci. 480, 51–56 (2011).

    Google Scholar 

  15. Campuzano-Jost, P. et al. Near real-time measurement of sea-salt aerosol during the SEAS Campaign: comparison of emission-based sodium detection with an aerosol volatility technique. J. Atmos. Ocean Tech. 20, 1421–1430 (2003).

    Article  Google Scholar 

  16. Hobbs, P. V. Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean. Q. J. R. Meteorol. Soc. 97, 263–271 (1971).

    Article  Google Scholar 

  17. McInnes, L. M., Covert, D. S. & Baker, B. The number of sea-salt, sulfate, and carbonaceous particles in the marine atmosphere: EM measurements consistent with the ambient size distribution. Tellus B 49, 300–313 (1997).

    Article  Google Scholar 

  18. Murphy, D. M. et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392, 62–65 (1998).

    Article  Google Scholar 

  19. Dinger, J. E., Howell, H. B. & Wojciechowski, T. A. On the source and composition of cloud nuclei in a subsident air mass over the North Atlantic. J. Atmos. Sci. 27, 791–797 (1970).

    Article  Google Scholar 

  20. O’Dowd, C. D., Smith, M. H. & Jennings, S. G. Submicron particle, radon, and soot carbon characteristics over the northeast Atlantic. J. Geophys. Res. 98, 1123–1135 (2003).

    Article  Google Scholar 

  21. Modini, R. L. et al. Primary marine aerosol-cloud interactions off the coast of California. J. Geophys. Res. 120, 4282–4303 (2015).

    Google Scholar 

  22. Lewis, E. R. & Schwartz, S. E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models - A Critical Review (American Geophysical Union, 2004).

    Google Scholar 

  23. Prather, K. A. et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 7550–7555 (2013).

    Article  Google Scholar 

  24. Spiel, D. E. On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res. 103, 24907–24918 (1998).

    Article  Google Scholar 

  25. Bikerman, J. J. Foams (Springer, 1973).

    Book  Google Scholar 

  26. Feingold, G., Cotton, W. R., Kreidenweis, S. M. & Davis, J. T. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties. J. Atmos. Sci. 56, 4100–4117 (1998).

    Article  Google Scholar 

  27. Bates, T. S. et al. Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103, 16369–16383 (1998).

    Article  Google Scholar 

  28. Covert, D. S., Kapustin, V. N., Bates, T. S. & Quinn, P. K. Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J. Geophys. Res. 101, 6919–6930 (1996).

    Article  Google Scholar 

  29. Quinn, P. K., Kapustin, V. N., Bates, T. S. & Covert, D. S. Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J. Geophys. Res. 101, 6931–6951 (1996).

    Article  Google Scholar 

  30. Clarke, A. et al. Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE-1. J. Geophys. Res. 103, 16397–16409 (1998).

    Article  Google Scholar 

  31. Raes, F. Entrainment of free-tropospheric aerosol as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 100, 2893–2903 (1995).

    Article  Google Scholar 

  32. Clarke, A. Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution. J. Geophys. Res. 98, 20633–20647 (1993).

    Article  Google Scholar 

  33. Bigg, E. K., Leck, C. & Nilsson, E. D. Sudden changes in Arctic atmosphere aerosol concentrations during summer and autumn. Tellus B 48, 254–271 (1996).

    Article  Google Scholar 

  34. Gras, J. L. Postfrontal nanoparticles at Cape Grim: impact on cloud nuclei concentrations. Environ. Chem. 6, 515–523 (2009).

    Article  Google Scholar 

  35. Gras, J. L., Jimi, S. I., Siems, S. T. & Krummel, P. B. Postfrontal nanoparticles at Cape Grim: observations. Environ. Chem. 6, 508–514 (2009).

    Article  Google Scholar 

  36. Hegg, D. A., Covert, D. S. & Kapustin, V. N. Modeling a case of particle nucleation in the marine boundary layer. J. Geophys. Res. 97, 9851–9857 (1992).

    Article  Google Scholar 

  37. Hoppel, W. A., Frick, G. M., Fitzgerald, J. W. & Larson, R. E. Marine boundary layer measurements of new particle formation and the effect which nonprecipitating clouds have on the aerosol size distribution. J. Geophys. Res. 99, 14443–14459 (1994).

    Article  Google Scholar 

  38. Frossard, A. A. et al. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. J. Geophys. Res. 116, D05205 (2011).

    Article  Google Scholar 

  39. Tunved, P., Strom, J. & Krejci, R. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660 (2013).

    Article  Google Scholar 

  40. Leaitch, W. R. et al. Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. Elem. Sci. Anth. 1, 17 (2013).

    Article  Google Scholar 

  41. Fitzgerald, J. W. Measurement of the relationship between the dry size and critical supersaturation of natural aerosol particles. J. Appl. Meteorol. 14, 1044–1049 (1975).

    Article  Google Scholar 

  42. Hoppel, W. A., Frick, G. M. & Fitzgerald, J. W. Deducing droplet concentration and supersaturation in marine boundary layer clouds from surface aerosol measurements. J. Geophys. Res. 101, 26553–26565 (1996).

    Article  Google Scholar 

  43. Leaitch, W. R. et al. Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: factors controlling cloud droplet number concentrations. J. Geophys. Res. 101, 29123–29135 (1996).

    Article  Google Scholar 

  44. Hudson, J. G. et al. Cloud condensation nuclei and ship tracks. J. Atmos. Sci. 57, 2696–2706 (2000).

    Article  Google Scholar 

  45. Roberts, G., Mauger, G., Hadley, O. & Ramanathan, V. North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei. J. Geophys. Res. 111, D13205 (2006).

    Article  Google Scholar 

  46. Hudson, J. G., Noble, S. & Jha, V. Stratus cloud supersaturations. Geophys. Res. Lett. 37, L21813 (2010).

    Article  Google Scholar 

  47. Covert, D. S., Kapustin, V. N., Quinn, P. K. & Bates, T. S. New particle formation in the marine boundary layer. J. Geophys. Res. 97, 20581–20589 (1992).

    Article  Google Scholar 

  48. Hoffmann, E. H. et al. An advanced modeling study on the impacts and atmospheric implications of multi-phase dimethyl sulfide chemistry. Proc. Natl Acad. Sci. USA 113, 11776–11781 (2016).

    Article  Google Scholar 

  49. Calhoun, J. A., Bates, T. S. & Charlson, R. J. Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys. Res. Lett. 18, 1877–1880 (1991).

    Article  Google Scholar 

  50. Norman, A. et al. Sources of aerosol sulphate at Alert: apportionment using stable isotopes. J. Geophys. Res. 104, 11619–11631 (1999).

    Article  Google Scholar 

  51. Burrows, S. M., Hoose, C., Poschl, U. & Lawrence, M. G. Ice nuclei in marine air: biogenic particles or dust? Atmos. Chem. Phys. 13, 245–267 (2013).

    Article  Google Scholar 

  52. Bates, T. S., Coffman, D. J., Covert, D. S. & Quinn, P. K. Regional marine boundary layer aerosol size distributions in the Indian, Atlantic and Pacific Oceans: a comparison of INDOEX measurements with ACE-1 and ACE-2, and Aerosols99. J. Geophys. Res. 107, 8026 (2002).

    Article  Google Scholar 

  53. Quinn, P. K. et al. Aerosol optical properties in the marine boundary layer during the first Aerosol Characterization Experiment (ACE-1) and the underlying chemical and physical aerosol properties. J. Geophys. Res. 103, 16547–16563 (1998).

    Article  Google Scholar 

  54. Russell, L. M. et al. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc. Natl Acad. Sci. USA 107, 6652–6657 (2010).

    Article  Google Scholar 

  55. Quinn, P. K. et al. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 7, 228–232 (2014).

    Article  Google Scholar 

  56. Berner, A. et al. The size distribution of the urban aerosol in Vienna. Sci. Tot. Environ. 13, 245–261 (1979).

    Article  Google Scholar 

  57. Holland, J. D. The Chemistry of the Atmosphere and Oceans (John Wiley, 1978).

    Google Scholar 

  58. Turpin, B. J. & Lim, H.-J. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Tech. 35, 602–610 (2001).

    Article  Google Scholar 

  59. Winklmeyer, W., Reischl, G. P., Lindner, A. O. & Berner, A. New electromobility spectrometer for the measurement of aerosol size distributions in the size range 1 to 1000 nm. J. Aerosol Sci. 22, 289–296 (1991).

    Article  Google Scholar 

  60. Bates, T. S. et al. Marine boundary layer dust and pollution transport associated with the passage of a frontal system over eastern Asia. J. Geophys. Res. 109, D19S19 (2004).

    Article  Google Scholar 

  61. Stratmann, F. & Wiedensohler, A. A new data inversion algorithm for DMPS measurements. J. Aerosol Sci. 27, 339–340 (1997).

    Article  Google Scholar 

  62. Lance, S., Medina, J., Smith, J. N. & Nenes, A. Mapping the operation of the DMT continuous flow CCN counter. Aerosol Sci. Tech. 40, 242–254 (2006).

    Article  Google Scholar 

  63. Roberts, G. & Nenes, A. A continuous-flow streamwise thermal gradient CCN chamber for atmospheric measurements. Aerosol Sci. Tech. 39, 206–221 (2005).

    Article  Google Scholar 

  64. Whittlestone, S. & Zahorowski, W. Baseline radon detectors for shipboard use: development and deployment in the First Aerosol Characterization Experiment (ACE-1). J. Geophys. Res. 103, 16743–16751 (1998).

    Article  Google Scholar 

  65. Rose, D. et al. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 8, 1153–1179 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NOAA Climate Program Office. We thank the captain and crew of all of the NOAA and UNOLS vessels that contributed to this work. This is PMEL contribution number 4622.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. P.K.Q. and T.S.B. designed and performed the experiments, analysed data and wrote the paper. D.J.C. and J.E.J. performed the experiments and analysed data. L.M.U. analysed data.

Corresponding author

Correspondence to P. K. Quinn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, P., Coffman, D., Johnson, J. et al. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nature Geosci 10, 674–679 (2017). https://doi.org/10.1038/ngeo3003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing