Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A reverse energy cascade for crustal magma transport

Abstract

Direct constraints on the ascent, storage and eruption of mantle melts come primarily from exhumed, long-frozen intrusions. These structures, relics of a dynamic magma transport network, encode how Earth’s crust grows and differentiates over time. Furthermore, they connect mantle melting to an evolving distribution of surface volcanism. Disentangling magma transport processes from the plutonic record is consequently a seminal but unsolved problem. Here we use field data analyses, scaling theory and numerical simulations to show that the size distribution of intrusions preserved as plutonic complexes in the North American Cordillera suggests a transition in the mechanical response of crustal rocks to protracted episodes of magmatism. Intrusion sizes larger than about 100 m follow a power-law scaling expected if energy delivered from the mantle to open very thin dykes and sills is transferred to intrusions of increasing size. Merging, assimilation and mixing of small intrusions into larger ones occurs until irreversible deformation and solidification dissipate available energy. Mantle magma supply over tens to hundreds of thousands of years will trigger this regime, a type of reverse energy cascade, depending on the influx rate and efficiency of crustal heating by intrusions. Identifying regimes of magma transport provides a framework for inferring subsurface magmatic processes from surface patterns of volcanism, information preservation in the plutonic record, and related effects including climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normalized histograms of characteristic length scales associated with magmatic intrusions.
Figure 2: Magma transport regimes are controlled by crustal rheology and episodicity of mantle melt supply.
Figure 3: A magmatic reverse energy cascade in the viscous regime.

Similar content being viewed by others

References

  1. Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Article  Google Scholar 

  2. White, S. M., Crisp, J. A. & Spera, F. J. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7, Q03010 (2006).

    Google Scholar 

  3. Lee, C.-T. A., Thurner, S., Paterson, S. R. & Cao, W. The rise and fall of continental arcs: interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 425, 105–119 (2015).

    Article  Google Scholar 

  4. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, aag3055 (2017).

    Article  Google Scholar 

  5. Davidson, J., Tepley, F., Palacz, Z. & Meffan-Main, S. Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks. Earth Planet. Sci. Lett. 184, 427–442 (2001).

    Article  Google Scholar 

  6. de Silva, S. L. & Gosnold, W. D. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 167, 320–335 (2007).

    Article  Google Scholar 

  7. Aoki, Y., Segall, P., Kato, T., Cervelli, P. & Shimada, S. Imaging magma transport during the 1997 seismic swarm off the Izu Penninsula, Japan. Science 286, 927–930 (1999).

    Article  Google Scholar 

  8. Petford, N. Rheology of granitic magma during ascent and emplacement. Annu. Rev. Earth Planet. Sci. 31, 399–427 (2003).

    Article  Google Scholar 

  9. Wada, Y. On the relationship between dike width and magma viscosity. J. Geophys. Res. 99, 17743–17755 (1994).

    Article  Google Scholar 

  10. Rubin, A. M. Getting granite dikes out of the source region. J. Geophys. Res. B4, 5911–5929 (1995).

    Article  Google Scholar 

  11. Krumbholz, M. et al. Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength. Nat. Commun. 5, 3272 (2014).

    Article  Google Scholar 

  12. McCaffrey, K. & Petford, N. Are granitic plutons scale invariant? J. Geol. Soc. Lond. 154, 1–4 (1997).

    Article  Google Scholar 

  13. Annen, C. & Sparks, R. S. J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet. Sci. Lett. 203, 937–955 (2002).

    Article  Google Scholar 

  14. Michaut, C. & Jaupart, C. Two models for the formation of magma reservoirs by small increments. Tectonophysics 500, 34–49 (2011).

    Article  Google Scholar 

  15. Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Article  Google Scholar 

  16. Gerya, T. V. & Burg, J.-P. Intrusion of ultramafic bodies into the continental crust: numerical simulation. Phys. Earth Planet. Inter. 160, 124–142 (2007).

    Article  Google Scholar 

  17. Karlstrom, L., Dufek, J. & Manga, M. Magma chamber stability in arc and continental crust. J. Volcanol. Geotherm. Res. 190, 249–270 (2010).

    Article  Google Scholar 

  18. Hutton, D. H. W. & Reavy, R. J. Strike-slip tectonics and granite petrogenisis. Tectonics 11, 960–967 (1992).

    Article  Google Scholar 

  19. McNulty, B. A., Tong, W. & Tobisch, O. T. Assembly of a dike-fed magma chamber: the Jackass Lakes pluton, central Sierra Nevada, California. Geol. Soc. Am. Bull. 108, 926–940 (1996).

    Article  Google Scholar 

  20. Paterson, S., Memeti, V., Mundil, R. & Zak, J. Implications of repeated, multiscale, magmatic erosion and recycling in a mid-crustal pluton. Am. Mineral. 101, 2176–2198 (2016).

    Article  Google Scholar 

  21. Wiebe, R. A. Basaltic injections into floored silicic magma chambers. EOS Trans. Am. Geophys. Union 74, abstr. V44C-06 (1993).

    Article  Google Scholar 

  22. Vigneresse, J. L. & Bouchez, J. L. Successive granitic magma batches during pluton emplacement: the case of Cabeza de Araya (Spain). J. Petrol. 38, 1767–1776 (1997).

    Article  Google Scholar 

  23. Paterson, S., Okaya, D., Memeti, V., Economos, R. & Miller, R. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439–1468 (2011).

    Article  Google Scholar 

  24. Rubin, A. M. Dikes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett. 117, 653–670 (1993).

    Article  Google Scholar 

  25. Karlstrom, L., Dufek, J. & Manga, M. Organization of volcanic plumbing through magmatic lensing by magma chambers and volcanic edifices. J. Geophys. Res. 114, B006339 (2009).

    Article  Google Scholar 

  26. Galland, O., Burchardt, S., Hallot, E., Mourgues, R. & Bulois, C. Dynamics of dikes versus cones sheets in volcanic systems. J. Geophys. Res. 119, 6178–6192 (2014).

    Article  Google Scholar 

  27. Townsend, M. R., Pollard, D. D. & Smith, R. P. Mechanical models for dikes: a third school of thought. Tectonophysics 703, 98–118 (2017).

    Article  Google Scholar 

  28. Miller, R. B. & Paterson, S. R. Construction of mid-crustal sheeted plutons: examples from the North Cascades, Washington. Geol. Soc. Am. Bull. 113, 1423–1442 (2001).

    Article  Google Scholar 

  29. Cathles, L. M. An analysis of the cooling of intrusives by ground-water convection which includes boiling. Econom. Geol. 72, 804–826 (1977).

    Article  Google Scholar 

  30. Rubie, D. C. Reaction-enhanced ductility: the role of solid-solid univariant reactions in deformation of the crust and mantle. Tectonophysics 96, 331–352 (1983).

    Article  Google Scholar 

  31. Kirby, S. H. & Kronenberg, A. K. Rheology of the the lithosphere: selected topics. Rev. Geophys. 25, 1219–1244 (1987).

    Article  Google Scholar 

  32. Menand, T., Annen, C. & de Saint Blanquat, M. Rates of magma transfer in the crust: insights into magma reservoir recharge and pluton growth. Geology 43, 199–202 (2015).

    Article  Google Scholar 

  33. Petford, N. & Gallagher, K. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet. Sci. Lett. 193, 483–499 (2001).

    Article  Google Scholar 

  34. Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. USSR Acad. Sci. 30, 9–13 (1941).

    Google Scholar 

  35. England, P. & McKenzie, D. A thin viscous sheet model for continental deformation. Geophys. J. Int. 70, 295–321 (1982).

    Article  Google Scholar 

  36. Weinberg, R. F. Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos 46, 393–410 (1999).

    Article  Google Scholar 

  37. Christopher, T. E. et al. Crustal-scale deagssing due to magma system destabilization and magma-gas decoupling at Soufreiére Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16, 2797–2811 (2015).

    Article  Google Scholar 

  38. Jerolmack, D. J. & Paola, C. Shredding of environmental signals by sediment transport. Geophys. Res. Lett. 37, L044638 (2010).

    Article  Google Scholar 

  39. Kent, A. J. R., Darr, C., Koleszar, A. M., Salisbury, M. J. & Cooper, K. M. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 3, 631–636 (2010).

    Article  Google Scholar 

  40. Matzel, J. E. P. & Bowring, S. A. Time scales of pluton construction at differing crustal levels: examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. GSA Bull. 118, 1412–1430 (2006).

    Article  Google Scholar 

  41. Ducea, M. N., Paterson, S. R. & Decelles, P. G. High-volume magmatic events in subduction systems. Elements 11, 99–104 (2015).

    Article  Google Scholar 

  42. Bryan, S. E. & Ferrari, L. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol. Soc. Am. Bull. 125, 1053–1078 (2013).

    Article  Google Scholar 

  43. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality - an explanation for 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  Google Scholar 

  44. Lenardic, A., Jellinek, A. M., Foley, B., O’Neill, C. & Moore, W. B. Climate-tectonic coupling: variations in the mean, variations about the mean, and variations in the mode. J. Geophys. Res. 121, 1831–1864 (2016).

    Article  Google Scholar 

  45. Dessert, C. et al. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188, 459–474 (2001).

    Article  Google Scholar 

  46. Jellinek, A. M. & Jackson, M. G. Connections between the bulk composition, geodynamics and habitability of Earth. Nat. Geosci. 8, 587–593 (2015).

    Article  Google Scholar 

  47. Ray, R., Sheth, H. C. & Mallik, J. Structure and emplacement of the Nandurbar-Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bull. Volcanol. 69, 537–551 (2007).

    Article  Google Scholar 

  48. Muirhead, J. D., White, G. A. J. D. L. & Rowland, J. V. Cracking the lid: sill-fed dikes are the likely feeders of flood basalt eruptions. Earth Planet. Sci. Lett. 406, 187–197 (2014).

    Article  Google Scholar 

  49. Wager, L. R. & Brown, G. M. Layered Igneous Rocks (Oliver and Boyd, 1967).

    Google Scholar 

  50. Irvine, T. N. Terminology for layered intrusions. J. Petrol. 23, 127–162 (1982).

    Article  Google Scholar 

  51. Cawthorn, R. G. Layered Intrusions (Elsevier, 1996).

    Google Scholar 

  52. Zak, J. & Paterson, S. R. Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): implications for episodic emplacement and physical processes in a continental arc magma chamber. GSA Bull. 117, 1242–1255 (2005).

    Google Scholar 

  53. Paterson, S. R., Zak, J. & Janousek, V. Growth of complex magmatic zones during recycling of older magmatic phases: the Sawmill Canyon area in the Toulumne Batholith, Sierra Nevada, California. J. Volcanol. Geotherm. Res. 177, 457–484 (2008).

    Article  Google Scholar 

  54. Miller, C. F. et al. Growth of plutons by incremental emplacement of sheets in crystal-rich host: evidence from Miocene intrusion of the Colorado River region, Nevada, USA. Tectonophysics 500, 65–77 (2011).

    Article  Google Scholar 

  55. Hardee, H. C. Incipient magma chamber formation as a result of repetitive intrusions. Bull. Volcanol. 45, 41–49 (1982).

    Article  Google Scholar 

  56. Lagarde, J. L., Brun, J. P. & Gapais, D. Formation of epizonal granitic plutons by in situ assemblage of laterally expanding magma. Adadémie des Sci. Comptes Rednus 310, 1109–1114 (1990).

    Google Scholar 

  57. Johnson, S. E., Paterson, S. R. & Tate, M. C. Structure and emplacement history of a multiple-center, cone-sheet-bearing ring complex: the Zarza Intrusive Complex, Baja California, Mexico. Geol. Soc. Am. Bull. 111, 607–619 (1999).

    Article  Google Scholar 

  58. Lipman, P. W. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3, 42–70 (2007).

    Article  Google Scholar 

  59. Michel, J., Baumgartner, L., Putliz, B., Schaltegger, U. & Ovtcharova, M. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36, 459–462 (2008).

    Article  Google Scholar 

  60. Cruden, A. R. & McCaffrey, K. J. W. Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys. Chem. Earth A 26, 303–315 (2001).

    Article  Google Scholar 

  61. Miller, R. B., Patterson, S. R. & Matzel, J. P. Plutonism at different crustal levels: insights from the 5-40 km (paleodepth) North Cascades crustal section, Washington. Geol. Soc. Am. Spec. Pap. 456, 125–149 (2009).

    Google Scholar 

  62. Vernon, R. H. & Paterson, S. R. Mesoscopic structures resulting from crystal accumulation and melt movement in granites. Trans. R. Soc. Edinburgh 97, 369–381 (2006).

    Article  Google Scholar 

  63. Dufek, J. & Bergantz, G. W. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J. Petrol. 46, 2167–2195 (2005).

    Article  Google Scholar 

  64. Schöpa, A. & Annen, C. The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J. Geophys. Res. 118, 1–17 (2013).

    Article  Google Scholar 

  65. Carrigan, C. R. Biot number and thermos bottle effect: implications for magma-chamber convection. Geology 16, 771–774 (1988).

    Article  Google Scholar 

  66. Segall, P. Earthquake and Volcano Deformation (Princeton, 2010).

    Book  Google Scholar 

  67. Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

    Article  Google Scholar 

  68. Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    Article  Google Scholar 

  69. Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  Google Scholar 

  70. Jellinek, A. M., Gordon, R. G. & Zatman, S. Experimental tests of simple models for the dynamics of diffuse oceanic plate boundaries. Geophys. J. Int. 164, 624–632 (2006).

    Article  Google Scholar 

  71. Regenauer-Lieb, K. & Yuen, D. A. Modeling shear zone in geological and planetary sciences: solid- and fluid-thermal-mechanical approaches. Earth-Sci. Rev. 63, 295–349 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

L.K. and S.R.P. acknowledge support from NSF. L. Vanderkluysen provided Deccan Traps dyke thickness data.

Author information

Authors and Affiliations

Authors

Contributions

L.K. and A.M.J. conceived the study, developed the model and wrote the paper. S.R.P. compiled plutonic intrusion size data and provided critical input related to field observations. L.K. carried out all calculations.

Corresponding author

Correspondence to Leif Karlstrom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 432 kb)

Supplementary Information

Supplementary Information (XLSX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlstrom, L., Paterson, S. & Jellinek, A. A reverse energy cascade for crustal magma transport. Nature Geosci 10, 604–608 (2017). https://doi.org/10.1038/ngeo2982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing