Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substantial inorganic carbon sink in closed drainage basins globally

Abstract

Arid and semi-arid ecosystems are increasingly recognized as important carbon storage sites. In these regions, extensive sequestration of dissolved inorganic carbon can occur in the terminal lakes of endorheic basins—basins that do not drain to external bodies of water. However, the global magnitude of this dissolved inorganic carbon sink is uncertain. Here we present isotopic, radiocarbon, and chemical analyses of groundwater, river water, and sediments from the terminal region of the endorheic Shiyang River drainage basin, in arid northwest China. We estimate that 0.13 Pg of dissolved inorganic carbon was stored in the basin during the mid-Holocene. Pollen-based reconstructions of basin-scale productivity suggest that the mid-Holocene dissolved inorganic carbon sink was two orders of magnitude smaller than terrestrial productivity in the basin. We use estimates of dissolved inorganic carbon storage based on sedimentary data from 11 terminal lakes of endorheic basins around the world as the basis for a global extrapolation of the sequestration of dissolved organic carbon in endorheic basins. We estimate that 0.152 Pg of dissolved inorganic carbon is buried per year today, compared to about 0.211 Pg C yr−1 during the mid-Holocene. We conclude that endorheic basins represent an important carbon sink on the global scale, with a magnitude similar to deep ocean carbon burial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global map of endorheic basins and arid land (left), and elevation map of the Shiyang River drainage basin (right).
Figure 2: The radiocarbon/OSL dating results, lithology and locations of the Holocene sections.
Figure 3: DIC content and NEP of the Shiyang River drainage basin.
Figure 4: Global locations of the 60 endorheic basins.

Similar content being viewed by others

References

  1. Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M. & Kirk, G. J. D. Carbon losses from all soils across England and Wales 1978–2003. Nature 437, 245–248 (2005).

    Article  Google Scholar 

  2. Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manage. 33, 528–544 (2004).

    Article  Google Scholar 

  3. Schimel, D. S. et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–172 (2001).

    Article  Google Scholar 

  4. Evans, R. D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2 . Nat. Clim. Change 4, 394–397 (2014).

    Article  Google Scholar 

  5. Schlesinger, H. An evaluation of abiotic carbon sinks in deserts. Glob. Change Biol. 23, 25–27 (2016).

    Article  Google Scholar 

  6. Soper, F., McCalley, C., Sparks, K. & Sparks, J. Soil carbon dioxide emissions from the Mojave Desert: isotopic evidence for a carbonate source. Geophys. Res. Lett. 44, 245–251 (2016).

    Article  Google Scholar 

  7. Li, Y., Wang, Y., Houghton, R. A. & Tang, L. S. Hidden carbon sink beneath desert. Geophys. Res. Lett. 42, 5880–5887 (2015).

    Article  Google Scholar 

  8. Meybeck, M. Global analysis of river systems: from Earth system controls to anthropocene syndromes. Phil. Trans. R. Soc. Lond. B 358, 1935–1955 (2003).

    Article  Google Scholar 

  9. Ma, J., Li, X., Huang, T. & Edmunds, W. Chemical evolution and recharge characteristics of water resources in the Shiyang River Basin. Resour. Sci. 27, 117–122 (2005).

    Google Scholar 

  10. Shi, J., Zhao, X., Wang, Q., Shi, Y. & Li, C. Study on the evolution characteristics of groundwater chemistry environment in the Shiyang River Basin. Acta Sedimentol. Sin. 16, 145–148 (1998).

    Google Scholar 

  11. Eugster, H. P. & Jones, B. F. Behavior of major solutes during closed-basin brine evolution. Am. J. Sci. 279, 609–631 (1979).

    Article  Google Scholar 

  12. Morrill, C. et al. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat. Res. 65, 232–243 (2006).

    Article  Google Scholar 

  13. Li, Y., Wang, N., Cheng, H., Long, H. & Zhao, Q. Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas 38, 349–361 (2009).

    Article  Google Scholar 

  14. Li, Y. et al. Environmental change implied by the relationship between pollen assemblages and grain–size in N. W. Chinese lake sediments since the Late Glacial. Rev. Palaeobot. Palynol. 154, 54–64 (2009).

    Article  Google Scholar 

  15. Long, H., Lai, Z. P., Wang, N. A. & Li, Y. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China. Quat. Res. 74, 46–56 (2010).

    Article  Google Scholar 

  16. Long, H., Lai, Z., Fuchs, M., Zhang, J. R. & Li, Y. Timing of late Quaternary palaeolake evolution in Tengger Desert of northern China and its possible forcing mechanisms. Glob. Planet Change 92–93, 119–129 (2012).

    Article  Google Scholar 

  17. Liu, Y. & Li, Y. Quantitative reconstruction of precipitation and runoff during MIS 5a, MIS 3a, and Holocene, arid China. Theor. Appl. Climatol. 1, 1–8 (2016).

    Google Scholar 

  18. Pei, Z., Yang, H., Zhou, C. & Xu, X. Carbon balance in an alpine steppe in the Qinghai–Tibet Plateau. J. Integr. Plant Biol. 51, 521–6 (2009).

    Article  Google Scholar 

  19. Zhang, C. & Li, Y. Verification of watershed vegetation restoration policies, arid China. Sci. Rep. 6, 30740 (2016).

    Article  Google Scholar 

  20. Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 179–277 (John Wiley, 1996).

    Google Scholar 

  21. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  Google Scholar 

  22. Kessler, T. J. & Harvey, C. F. The global flux of carbon dioxide into groundwater. Geophys. Res. Lett. 47, 279–282 (2001).

    Article  Google Scholar 

  23. Shiklomanov, I. A. World Water Resources: A New Appraisal and Assessment for the 21st Century (UNESCO, 1998); http://www.ce.utexas.edu/prof/mckinney/ce385d/Papers/Shiklomanov.pdf

    Google Scholar 

  24. Worku, F. F., Werner, M., Wright, N., Zaag, P. & Demissie, S. Flow regime change in an Endorheic basin in Southern Ethiopia. Hydrol. Earth Syst. Sc. 18, 3837–3853 (2014).

    Article  Google Scholar 

  25. Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    Article  Google Scholar 

  26. Ballantye, A. P., Alden, C. B., Miller, J. B., Tan, P. P. & White, J. W. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    Article  Google Scholar 

  27. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  28. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  Google Scholar 

  29. McKinley, G. A., Fay, A. R., Takahashi, T. & Metzl, N. Convergence of atmospheric and North Atlantic carbon dioxide trends on multi decadal timescales. Nat. Geosci. 4, 606–610 (2011).

    Article  Google Scholar 

  30. Le Que¨re¨, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Article  Google Scholar 

  31. Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).

    Article  Google Scholar 

  32. Schlesinger, W. H. The formation of caliche in soils of the Mojave Desert, California. Geochim. Cosmochim. Acta 49, 57–66 (1985).

    Article  Google Scholar 

  33. Ballantyne, A. P. et al. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences 12, 2565–2584 (2015).

    Article  Google Scholar 

  34. Li, Y. et al. Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon. J. Asian Earth Sci. 58, 78–87 (2012).

    Article  Google Scholar 

  35. Ding, H. & Zhang, J. Goechemical properties and evolution of groundwater beneath the Hexi Corridor, Gansu Province. Arid Res. 22, 24–28 (2005).

    Google Scholar 

  36. Liu, Z. Research on material composition of Salt Lakes in Tengger Desert region. J. Salt Lake Res. 8, 21–26 (2000).

    Google Scholar 

  37. Zheng, M., Zhao, Y. & Liu, J. Palaeo climatic indicators of China’s Quaternary saline lake sediments and hydrochemistry. Acta Geol. Sin. 74, 259–265 (2000).

    Google Scholar 

  38. Wu, G. J. et al. Climatic changes in the north piedmont of eastern Qilian Mountains since 10 ka BP. J. Desert Res. 18, 193–200 (1998).

    Google Scholar 

  39. Zhang, H. C., Ma, Y. Z. & Wünnemann, B. A Holocene climatic record from arid northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162, 389–401 (2000).

    Article  Google Scholar 

  40. Chen, F. et al. Abrupt Holocene changes of the Asian monsoon at millennial and centennial scales: evidence from lake sediment document in Minqin Basin, NW China. Chin. Sci. Bull. 46, 1942–1947 (2001).

    Article  Google Scholar 

  41. Chen, F. et al. A mid–Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia China. Chin. Sci. Bull. 48, 1401–1410 (2003).

    Article  Google Scholar 

  42. Chen, F. H., Cheng, B., Zhao, Y., Zhu, Y. & Madsen, D. B. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene 16, 675–684 (2006).

    Article  Google Scholar 

  43. Zhao, Y., Yu, Z., Chen, F. & Li, J. Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. J. Arid Environ. 72, 2054–2064 (2008).

    Article  Google Scholar 

  44. Zhu, Y., Chen, F. H., Cheng, B., Zhang, J. W. & Madsen, D. B. Pollen assemblage features of modern water samples from the Shiyang River drainage, arid region of China. Acta Bot. Sin. 44, 367–372 (2002).

    Google Scholar 

  45. Zhu, Y., Xie, Y., Cheng, B., Chen, F. & Zhang, J. Pollen transport in the Shiyang River drainage, arid China. Chin. Sci. Bull. 48, 1499–1506 (2003).

    Article  Google Scholar 

  46. Cheng, B. et al. Relationship between the surface pollen and vegetation in Shiyang River drainage, northwest China. J. Glaciol. Geocryol. 26, 81–88 (2004).

    Google Scholar 

  47. Zhu, Y., Chen, F., Liu, H. J., Cheng, B. & Huang, X. Z. Preliminary studies on the air–borne pollen in the Shiyang River drainage, arid China. J. Lanzhou Univ. 39, 100–105 (2003).

    Google Scholar 

  48. Duarte, C. M. et al. CO2 emissions from saline lakes: a global estimate of a surprisingly large flux. J. Geophys. Res. Biogeosci. 113, 10654–10658 (2008).

    Google Scholar 

  49. Wirrmann, D. & Almeida, L. F. D. O. Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 59, 315–323 (1987).

    Article  Google Scholar 

  50. Anderson, L., Abbott, M. B. & Finney, B. P. Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quat. Res. 55, 313–321 (2001).

    Article  Google Scholar 

  51. Xue, J. & Zhong, W. Holocene climate change recorded by lacustrine sediments in Barkol Lake and its regional comparison. Quat. Sci. 28, 610–620 (2008).

    Google Scholar 

  52. Last, W. M. Holocene carbonate sedimentation in Lake Manitoba, Canada. Sedimentology 29, 691–704 (1982).

    Article  Google Scholar 

  53. Leroy, S. A. G., López–Merino, L., Tudryn, A., Chalié, F. & Gasse, F. Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian Basin as reconstructed from a deep-sea core. Quat. Sci. Rev. 101, 91–110 (2014).

    Article  Google Scholar 

  54. Jie, D. M. et al. Carbonate content of sedimentary core and Holocene lake-level fluctuation of Dabusu Lake. Mar. Geol. Quat. Geol. 33, 178–192 (2001).

    Google Scholar 

  55. Dean, W. et al. Modern and Glacial–Holocene Carbonate Sedimentation in Bear Lake, Utah–Idaho (Center for Integrated Data Analytics Wisconsin Science Center, 2005).

    Book  Google Scholar 

  56. Solotchina, E. P., Prokopenko, A. A., Kuzmin, M. I., Solotchin, P. A. & Zhdanova, A. N. Climate signals in sediment mineralogy of Lake Baikal and Lake Hovsgol during the LGM–Holocene transition and the 1-Ma carbonate record from the HDP–04 drill core. Quat. Int. 205, 38–52 (2009).

    Article  Google Scholar 

  57. Wittkop, C. A., Teranes, J. L., Dean, W. E. & Guilderson, T. P. A lacustrine carbonate record of Holocene seasonality and climate. Geology 37, 695–698 (2009).

    Article  Google Scholar 

  58. Li, M. et al. On the unusual Holocene carbonate sediment in Lake Nam Co, central Tibet. J. Mt. Sci. 6, 346–353 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41571178, 41371009 and 41530745) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2015-143).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. designed the project and this study; C.Z. performed the analyses; C.Z. and Y.L. wrote the manuscript; N.W., Y.L. and C.Z. completed the field work; N.W., Q.H., X.Z., Y.L., L.X. and W.Y. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yu Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2495 kb)

Supplementary Information

Supplementary Information (XLSX 31 kb)

Supplementary Information

Supplementary Information (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, C., Wang, N. et al. Substantial inorganic carbon sink in closed drainage basins globally. Nature Geosci 10, 501–506 (2017). https://doi.org/10.1038/ngeo2972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2972

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene