Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar

Abstract

Polar plankton communities are among the most productive, seasonally dynamic and rapidly changing ecosystems in the global ocean. However, persistent cloud cover, periods of constant night and prevailing low solar elevations in polar regions severely limit traditional passive satellite ocean colour measurements and leave vast areas unobserved for many consecutive months each year. Consequently, our understanding of the annual cycles of polar plankton and their interannual variations is incomplete. Here we use space-borne lidar observations to overcome the limitations of historical passive sensors and report a decade of uninterrupted polar phytoplankton biomass cycles. We find that polar phytoplankton dynamics are categorized by ‘boom–bust’ cycles resulting from slight imbalances in plankton predator–prey equilibria. The observed seasonal-to-interannual variations in biomass are predicted by mathematically modelled rates of change in phytoplankton division. Furthermore, we find that changes in ice cover dominated variability in Antarctic phytoplankton stocks over the past decade, whereas ecological processes were the predominant drivers of change in the Arctic. We conclude that subtle and environmentally driven imbalances in polar food webs underlie annual phytoplankton boom–bust cycles, which vary interannually at each pole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phytoplankton biomass observations from CALIOP and MODIS.
Figure 2: Polar phytoplankton cycles.
Figure 3: Climatological annual phytoplankton cycles.
Figure 4: Interannual changes in polar-zone phytoplankton biomass.

Similar content being viewed by others

References

  1. Hoge, F. E. et al. Airborne lidar detection of subsurface oceanic scattering layers. Appl. Opt. 27, 3969–3977 (1988).

    Article  Google Scholar 

  2. Churnside, J. H., Sawada, K. & Okumura, T. A comparison of airborne lidar and echo sounder performance in fisheries. J. Mar. Acoust. Soc. Jpn 28, 175–183 (2001).

    Google Scholar 

  3. Churnside, J. H. & Thorne, R. E. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton. Appl. Opt. 44, 5504–5511 (2005).

    Article  Google Scholar 

  4. Dickey, T. D., Kattawar, G. W. & Voss, K. J. Shedding new light on light in the ocean. Phys. Today 64, 44–49 (April, 2011).

    Article  Google Scholar 

  5. Behrenfeld, M. J. et al. Space-based lidar observations of global ocean plankton populations. Geophys. Res. Lett. 40, 4355–4360 (2013).

    Article  Google Scholar 

  6. Winker, D. M. et al. Overview of the CALIPSO Mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

    Article  Google Scholar 

  7. Babin, M. & Forget, M.-H. in Ocean Colour Remote Sensing of Polar Regions (eds Babin, M., Arrigo, K., Bélanger, S. & Forget, M.-H.) Ch. 1 (Reports of the Ocean Colour Coordinating Group, IOCCG, 2015).

    Google Scholar 

  8. Churnside, J. H., McCarty, B. J. & Lu, X. Subsurface ocean signals from an orbiting polarization lidar. Remote Sens. 5, 3457–3475 (2013).

    Article  Google Scholar 

  9. Lu, X., Hu, Y., Trepte, C., Zeng, S. & Churnside, J. H. Ocean subsurface studies with the CALIPSO spaceborne lidar. J. Geophys. Res. 119, 4305–4317 (2014).

    Article  Google Scholar 

  10. Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 1, GB1006 (2005).

    Google Scholar 

  11. Westberry, T. K., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22, GB2024 (2008).

    Article  Google Scholar 

  12. Graff, J. R. et al. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep-Sea Res. 102, 16–25 (2015).

    Article  Google Scholar 

  13. Behrenfeld, M. J. & Boss, E. S. Resurrecting the ecological underpinnings of ocean plankton blooms. Ann. Rev. Mar. Sci. 6, 167–194 (2014).

    Article  Google Scholar 

  14. Evans, G. T. & Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).

    Google Scholar 

  15. Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4, 880–887 (2014).

    Article  Google Scholar 

  16. Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, 16, L16502 (2012).

    Article  Google Scholar 

  17. Cavalieri, D. J., Gloersen, P., Parkinson, C., Comiso, J. & Zwally, H. J. Observed hemispheric asymmetry in global sea ice changes. Science 278, 1104–1106 (1997).

    Article  Google Scholar 

  18. Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).

    Article  Google Scholar 

  19. Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997–2006. J. Geophys. Res. 113, C08004 (2008).

    Article  Google Scholar 

  20. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  Google Scholar 

  21. de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightenment. J. Geophys. Res. 110, C09S16 (2005).

    Article  Google Scholar 

  22. Ichimi, K., Kawamura, T., Yamamoto, A., Tada, K. & Harrison, P. J. Extremely high growth rate of the small diatom Chaetoceros salsugineum isolated from an estuary in the eastern Seto inland sea, Japan. J. Phycol. 48, 1284–1288 (2012).

    Article  Google Scholar 

  23. Furnas, M. J. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plank. Res. 12, 1117–1151 (1990).

    Article  Google Scholar 

  24. Brand, L. E. & Guillard, R. R. L. The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. J. Exp. Mar. Biol. Ecol. 50, 119–132 (1981).

    Article  Google Scholar 

  25. Mahadevan, A., D’Asaro, E., Lee, C. & Perry, M. J. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337, 54–58 (2012).

    Article  Google Scholar 

  26. Coale, K. H. et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  Google Scholar 

  27. Irigoien, X., Harris, R. P., Head, R. N. & Harbour, D. North Atlantic Oscillation and spring bloom phytoplankton composition in the English Channel. J. Plankton Res. 22, 2367–2371 (2000).

    Article  Google Scholar 

  28. Hair, J. H. et al. Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt. 47, 6734–6752 (2008).

    Article  Google Scholar 

  29. deRada, S., Ladner, S. & Arnone, R. A. Coupling ocean models and satellite derived optical fields to estimate lidar penetration and detection performance. Proc. SPIE 8532, 85320T-1 (2012).

    Google Scholar 

  30. Hoge, F. E., Lyon, P. E., Wright, C. W., Swift, R. N. & Yungel, J. K. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter. Appl. Opt. 44, 2857–2862 (2005).

    Article  Google Scholar 

  31. Werdell, P. J. et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 52, 2019–2037 (2013).

    Article  Google Scholar 

  32. Maritorena, S., Siegel, D. A. & Peterson, A. R. Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt. 41, 2705–2714 (2002).

    Article  Google Scholar 

  33. Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).

    Article  Google Scholar 

  34. Boss, E. & Behrenfeld, M. J. In-situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys. Res. Lett. 37, L18603 (2010).

    Article  Google Scholar 

  35. Letelier, R. M., Karl, D. M., Abbott, M. R. & Bidigare, R. R. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol. Oceanogr. 49, 508–519 (2004).

    Article  Google Scholar 

  36. Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  37. Cummings, J. A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 131, 3583–3604 (2005).

    Article  Google Scholar 

  38. de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003 (2004).

    Article  Google Scholar 

  39. Antoine, D., André, J.-M. & Morel, A. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob. Biogeochem. Cycles 10, 57–69 (1996).

    Article  Google Scholar 

  40. Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  41. Behrenfeld, M. J. et al. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change 6, 323–330 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Aeronautics and Space Administration’s Ocean Biology and Biogeochemistry Program and the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES).

Author information

Authors and Affiliations

Authors

Contributions

M.J.B. designed the study; M.J.B., Y.H. and R.T.O’M. processed satellite data and analysed results; M.J.B. and R.T.O’M. prepared display items; M.J.B. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Michael J. Behrenfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrenfeld, M., Hu, Y., O’Malley, R. et al. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nature Geosci 10, 118–122 (2017). https://doi.org/10.1038/ngeo2861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing