Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

No evidence for Hadean continental crust within Earth’s oldest evolved rock unit

Abstract

Due to the acute scarcity of very ancient rocks, the composition of Earth’s embryonic crust during the Hadean eon (>4.0 billion years ago) is a critical unknown in our search to understand how the earliest continents evolved. Whether the Hadean Earth was dominated by mafic-composition crust, similar to today’s oceanic crust1,2,3,4, or included significant amounts of continental crust5,6,7,8 remains an unsolved question that carries major implications for the earliest atmosphere, the origin of life, and the geochemical evolution of the crust–mantle system. Here we present new U–Pb and Hf isotope data on zircons from the only precisely dated Hadean rock unit on Earth—a 4,019.6 ± 1.8 Myr tonalitic gneiss unit in the Acasta Gneiss Complex, Canada. Combined zircon and whole-rock geochemical data from this ancient unit shows no indication of derivation from, or interaction with, older Hadean continental crust. Instead, the data provide the first direct evidence that the oldest known evolved crust on Earth was generated from an older ultramafic or mafic reservoir that probably surfaced the early Earth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concordia plot of high-precision U–Pb data from the TC3 zircons.
Figure 2: Hafnium isotope analysis from 4,020 Myr zircon grains from Idiwhaa tonalitic gneiss sample TC3.
Figure 3: Modelling results show lack of evidence for Hadean TTG-like crust during formation of the Idiwhaa unit.

Similar content being viewed by others

References

  1. Kamber, B. S., Collerson, K. D., Moorbath, S. & Whitehouse, M. J. Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral Petrol. 145, 25–46 (2003).

    Article  Google Scholar 

  2. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

    Article  Google Scholar 

  3. Kemp, A. I. S., Hickman, A. H., Kirkland, C. L. & Vervoort, J. D. Hf isotopes in detrital and inherited zircons of the Pilbara craton provide no evidence for Hadean continents. Precambr. Res. 261, 112–126 (2015).

    Article  Google Scholar 

  4. Nebel, O., Rapp, R. P. & Yaxley, G. M. The role of detrital zircons in Hadean crustal research. Lithos 190–191, 313–327 (2013).

    Google Scholar 

  5. Harrison, T. M. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009).

    Article  Google Scholar 

  6. Harrison, T. M. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950 (2005).

    Article  Google Scholar 

  7. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  8. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    Article  Google Scholar 

  9. Caro, G., Bourdon, B., Birck, J. L. & Moorbath, S. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).

    Article  Google Scholar 

  10. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

    Article  Google Scholar 

  11. Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–99 (2012).

    Article  Google Scholar 

  12. Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 491, 96–99 (2011).

    Google Scholar 

  13. Roth, A. S. G. et al. Combined 147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosyst. 15, 2329–2345 (2014).

    Article  Google Scholar 

  14. Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616–618 (1983).

    Article  Google Scholar 

  15. Bowring, S. A. & Housh, T. The Earth’s early evolution. Science 269, 1535–1540 (1995).

    Article  Google Scholar 

  16. Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbath, S. Volcanic resurfacing and the early terrestrial crust: zircon U–Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240, 276–290 (2005).

    Article  Google Scholar 

  17. O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambr. Res. 220–221, 23–44 (2012).

    Article  Google Scholar 

  18. Roth, A. S. G. et al. Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet. Sci. Lett. 361, 50–57 (2013).

    Article  Google Scholar 

  19. Moyen, J.-F. & Martin, H. Forty years of TTG research. Lithos 148, 312–336 (2012).

    Article  Google Scholar 

  20. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nature Geosci. 7, 529–533 (2014).

    Article  Google Scholar 

  21. Grove, T. L. & Kinzler, R. J. Petrogenesis of andesites. Annu. Rev. Earth Planet. Sci. 14, 417–454 (1986).

    Article  Google Scholar 

  22. Rapp, R. P. et al. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambr. Res. 51, 1–25 (1991).

    Article  Google Scholar 

  23. Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral Petrol. 133, 1–11 (1998).

    Article  Google Scholar 

  24. Amelin, Y., Lee, D. C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999).

    Article  Google Scholar 

  25. Iizuka, T. et al. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in-situ Lu–Hf isotope analysis of zircon. Chem. Geol. 259, 230–239 (2009).

    Article  Google Scholar 

  26. Guitreau, M. et al. Lu–Hf isotope systematics of the Hadean–Eoarchean Acasta Gneiss Complex (Northwest Territories, Canada). Geochim. Cosmochim. Acta 135, 251–269 (2014).

    Article  Google Scholar 

  27. Iizuka, T. et al. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust. Geology 34, 245–248 (2006).

    Article  Google Scholar 

  28. Taylor, D. J., McKeegan, K. D. & Harrison, T. M. Lu–Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279, 157–164 (2009).

    Article  Google Scholar 

  29. Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambr. Res. 258, 48–82 (2015).

    Article  Google Scholar 

  30. Debaille, V., O’Neill, C., Brandon, A. D. & Haenecour, P. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    Article  Google Scholar 

  31. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambr. Res. 281, 453–472 (2016).

    Article  Google Scholar 

  32. Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

    Article  Google Scholar 

  33. Ghiorso, M. S. & Gualda, G. A. R. An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral Petrol. 169, 53–30 (2015).

    Article  Google Scholar 

  34. Wood, D. A. Major and trace element variations in the tertiary lavas of Eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J. Petrol. 19, 393–436 (1978).

    Article  Google Scholar 

  35. Jónasson, K. Magmatic evolution of the Heiðarsporður ridge, NE-Iceland. J. Volcanol. Geotherm. Res. 147, 109–124 (2005).

    Article  Google Scholar 

  36. Mancini, A., Mattsson, H. B. & Bachmann, O. Origin of the compositional diversity in the basalt-to-dacite series erupted along the Heiðarsporður ridge, NE Iceland. J. Volcanol. Geotherm. Res. 301, 116–127 (2015).

    Article  Google Scholar 

  37. Rollinson, H. R. Using Geochemical Data (Pearson Education Limited, 1993).

    Google Scholar 

  38. Taylor, H. P. & Sheppard, S. M. F. Igneous rocks I: processes of isotopic fractionation and isotope systematics. Rev. Mineral. Geochem. 16, 227–271 (1986).

    Google Scholar 

  39. Muehlenbachs, K., Anderson, A. T. & Sigvaldason, G. E. Low-O18 basalts from Iceland. Geochim. Cosmochim. Acta 38, 577–588 (1974).

    Article  Google Scholar 

  40. Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    Article  Google Scholar 

  41. Carley, T. L. et al. Iceland is not a magmatic analog for the Hadean: evidence from the zircon record. Earth Planet. Sci. Lett. 405, 85–97 (2014).

    Article  Google Scholar 

  42. O’Neil, J., Boyet, M., Carlson, R. W. & Paquette, J.-L. Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. Earth Planet. Sci. Lett. 379, 13–25 (2013).

    Article  Google Scholar 

  43. Reiners, P. W., Nelson, B. K. & Ghiorso, M. S. Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23, 563–566 (1995).

    Article  Google Scholar 

  44. Wasserburg, G. J., Jacousen, S. B., DePaolo, D. J., McCulloch, M. T. & Wen, T. Precise determination of ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–2323 (1981).

    Article  Google Scholar 

  45. Creaser, R. A., Erdmer, P., Stevens, R. A. & Grant, S. L. Tectonic affinity of Nisutlin and Anvil assemblage strata from the Teslin tectonic zone, northern Canadian Cordillera: constraints from neodymium isotope and geochemical evidence. Tectonics 16, 107–121 (1997).

    Article  Google Scholar 

  46. Unterschutz, J. L., Creaser, R. A., Erdmer, P., Thompson, R. I. & Daughtry, K. L. North American margin origin of Quesnel terrane strata in the southern Canadian Cordillera: inferences from geochemical and Nd isotopic characteristics of Triassic metasedimentary rocks. Geol. Soc. Am. Bull. 114, 462–475 (2002).

    Article  Google Scholar 

  47. Schmidberger, S. S., Simonetti, A., Heaman, L. M., Creaser, R. A. & Whiteford, S. Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet. Sci. Lett. 254, 55–68 (2007).

    Article  Google Scholar 

  48. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  49. Fisher, C. M., Vervoort, J. D. & DuFrane, S. A. Accurate Hf isotope determinations of complex zircons using the ‘laser ablation split stream’ method. Geochem. Geophys. Geosyst. 15, 121–139 (2014).

    Article  Google Scholar 

  50. Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  51. Fisher, C. M. et al. Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis. Chem. Geol. 286, 32–47 (2011).

    Article  Google Scholar 

  52. Ickert, R. B. Algorithms for estimating uncertainties in initial radiogenic isotope ratios and model ages. Chem. Geol. 340, 1–43 (2013).

    Article  Google Scholar 

  53. Hoskin, P. W. O. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27–62 (2003).

    Article  Google Scholar 

  54. Lenting, C. et al. The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. Am. Mineral. 95, 1343–1348 (2010).

    Article  Google Scholar 

  55. Amelin, Y., Kamo, S. L. & Lee, D.-C. Evolution of early crust in chondritic or non-chondritic Earth inferred from U–Pb and Lu–Hf data for chemically abraded zircon from the Itsaq Gneiss Complex, West Greenland. Can. J. Earth Sci. 48, 141–160 (2011).

    Article  Google Scholar 

  56. Mattinson, J. M. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

    Article  Google Scholar 

  57. Wotzlaw, J. F. et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41, 867–870 (2013).

    Article  Google Scholar 

  58. Davies, J. H. F. L., Wotzlaw, J.-F., Wolfe, A. P., Heaman, L. M. & Arbour, V. Assessing the age of the Late Cretaceous Danek Bonebed with U–Pb geochronology. Can. J. Earth Sci. 51, 982–986 (2014).

    Article  Google Scholar 

  59. Krogh, T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  60. Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    Article  Google Scholar 

  61. Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  Google Scholar 

  62. Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).

    Article  Google Scholar 

  63. Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U–Pb_Redux. Geochem. Geophys. Geosyst. 12, Q0AA19 (2011).

    Article  Google Scholar 

  64. McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).

    Article  Google Scholar 

  65. D’Abzac, F.-X., Davies, J. H. F. L., Wotzlaw, J.-F. & Schaltegger, U. Hf isotope analysis of small zircon and baddeleyite grains by conventional multi collector-inductively coupled plasma-mass spectrometry. Chem. Geol. 433, 12–23 (2016).

    Article  Google Scholar 

  66. Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. & Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 234, 105–126 (2006).

    Article  Google Scholar 

  67. Albarede, F. et al. Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim. Cosmochim. Acta 68, 2725–2744 (2004).

    Article  Google Scholar 

  68. Blichert-Toft, J. & Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997).

    Article  Google Scholar 

  69. Yuan, H. et al. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol. 247, 100–118 (2008).

    Article  Google Scholar 

  70. Thirlwall, M. F. & Anczkiewicz, R. Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrom. 235, 59–81 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

J. Ketchum and the Northwest Territories Geological Survey staff are thanked for scientific and field support, without which this project would not have been possible; E. Thiessen and R. Reimink are thanked for mapping and field assistance. F.X. D’Abzac is thanked for assistance with solution Hf isotope analyses at the University of Geneva and Y. Luo is thanked for assistance with LA-ICPMS split stream Hf-U-Pb analyses. A. Oh and K. Nichols are thanked for laboratory support during ion probe analyses. A review from J. O’Neil vastly improved this work. This research was funded by National Science and Engineering Research Council of Canada Discovery Grants to T.C. and L.M.H., as well as Canada Excellence Research Chairs Program funding to D.G.P., support from the University of Geneva and the Swiss National Science Foundation to J.H.F.L.D. and U.S., and a Circumpolar/Boreal Alberta Research grant for fieldwork to J.R.R.

Author information

Authors and Affiliations

Authors

Contributions

J.R.R., T.C. and J.H.F.L.D. conducted mapping and sample collection. J.R.R. carried out sample crushing, processing and zircon separations. J.H.F.L.D. and J.R.R. carried out collection of bulk zircon Hf and U–Th–Pb isotopic data. C.S., J.R.R. and D.G.P. collected zircon laser-ablation Hf and U–Pb data. R.A.C. collected whole-rock Nd isotope data. Modelling was conducted by J.R.R. and T.C. All authors contributed to discussion of the results and their implications, as well as preparation of the manuscript.

Corresponding author

Correspondence to J. R. Reimink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1280 kb)

Supplementary Table 1

Supplementary Information (XLS 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimink, J., Davies, J., Chacko, T. et al. No evidence for Hadean continental crust within Earth’s oldest evolved rock unit. Nature Geosci 9, 777–780 (2016). https://doi.org/10.1038/ngeo2786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing