Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters

Abstract

The decay of the martian atmosphere—which is dominated by carbon dioxide—is a component of the long-term environmental change on Mars1 from a climate that once allowed rivers to flow2,3,4,5,6 to the cold and dry conditions of today. The minimum size of craters serves as a proxy for palaeopressure of planetary atmospheres, because thinner atmospheres permit smaller objects to reach the surface at high velocities and form craters7,8,9. The Aeolis Dorsa region near Gale crater on Mars contains a high density of preserved ancient craters interbedded with river deposits11 and thus can provide constraints on atmospheric density at the time of fluvial activity. Here we use high-resolution images and digital terrain models10 from the Mars Reconnaissance Orbiter to identify ancient craters in deposits in Aeolis Dorsa that date to about 3.6 Gyr ago and compare their size distribution with models of atmospheric filtering of impactors12,13. We obtain an upper limit of 0.9 ± 0.1 bar for the martian atmospheric palaeopressure, rising to 1.9 ± 0.2 bar if rimmed circular mesas—interpreted to be erosionally-resistant fills or floors of impact craters—are excluded. We assume target properties appropriate for desert alluvium14: if sediment had rock-mass strength similar to bedrock at the time of impact, the paleopressure upper limit increases by a factor of up to two. If Mars did not have a stable multibar atmosphere at the time that the rivers were flowing—as suggested by our results—then a warm and wet CO2/H2O greenhouse2 is ruled out, and long-term average temperatures were most likely below freezing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gallery of ancient martian craters (from ref. 20).
Figure 2: Upper limits on the atmospheric pressure of early Mars.
Figure 3: Palaeopressure constraints on the great drying of Mars.

Similar content being viewed by others

References

  1. Mahaffy, P. R. et al. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover. Science 341, 263–266 (2013).

    Article  Google Scholar 

  2. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  Google Scholar 

  3. Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113, E11007 (2008).

    Article  Google Scholar 

  4. Tian, F. et al. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010).

    Article  Google Scholar 

  5. Forget, F. et al. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article  Google Scholar 

  6. Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale crater mound. Icarus 223, 181–210 (2013).

    Article  Google Scholar 

  7. Chappelow, J. E. & Golombek, M. P. Event and conditions that produced the iron meteorite Block Island on Mars. J. Geophys. Res. 115, E00F07 (2010).

    Article  Google Scholar 

  8. Wood, C. A. et al. Impact craters on Titan. Icarus 206, 344–344 (2010).

    Article  Google Scholar 

  9. Herrick, R. R., Sharpton, V. L., Malin, M. C., Lyons, S. N. & Feely, K. in Venus II (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 1015–1046 (Univ. Arizona Press, 1997) (catalogue as v3; updated by R. R. Herrick in http://www.lpi.usra.edu/resources/vc/vchome.html)

    Google Scholar 

  10. Burr, D. M. et al. Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates. J. Geophys. Res. 115, E07011 (2010).

    Article  Google Scholar 

  11. Kirk, R. L. et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. 113, E00A24 (2008).

    Article  Google Scholar 

  12. Williams, J-P., Pathare, A. & Aharonson, O. Modeling Small Impact Populations on Mars, EPSC Abstracts, Vol. 7 (European Planetary Science Congress, (2012).

    Google Scholar 

  13. Popova, O., Nemtchinov, I. & Hartmann, W. K. Bolides in the present and past martian atmosphere and effects on cratering processes. Meteorit. Planet. Sci. 36, 905–925 (2003).

    Article  Google Scholar 

  14. Holsapple, K. A. & Housen, K. R. A crater and its ejecta: An interpretation of Deep Impact. Icarus 191, 586–597 (2007).

    Article  Google Scholar 

  15. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: New estimates. Astrophys. J. 765, 131 (2013).

    Article  Google Scholar 

  16. Lammer, H. et al. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article  Google Scholar 

  17. Manning, C. V., McKay, C. P. & Zahnle, K. J. Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 38–59 (2006).

    Article  Google Scholar 

  18. Manga, M., Patel, A., Dufek, J. & Kite, E. S. Wet surface and dense atmosphere on early Mars inferred from the bomb sag at Home Plate, Mars. Geophys. Res. Lett. 39, L01202 (2012).

    Article  Google Scholar 

  19. Vasavada, A. R., Milavec, T. J. & Paige, D. A. Microcraters on Mars: Evidence for past climate variations. J. Geophys. Res. 98, 3469–3476 (1993).

    Article  Google Scholar 

  20. Kite, E. S., Lucas, A. S. & Fassett, C. I. Pacing early Mars river activity: Embedded craters in the Aeolis Dorsa region imply river activity spanned (1–20 Myr). Icarus 225, 850–855 (2013).

    Article  Google Scholar 

  21. Melosh, H. J. in Impact Cratering: A Geologic Process 1989).

    Google Scholar 

  22. Dundas, C. M., Keszthelyi, L. P., Bray, V. J. & McEwen, A. S. Role of material properties in the cratering record of young platy-ridged lava on Mars. Geophys. Res. Lett. 37, L12203 (2010).

    Google Scholar 

  23. Holsapple, K. A. The scaling of impact processes in planetary sciences. Ann. Rev. Earth Planet. Sci. 21, 333–373 (1993).

    Article  Google Scholar 

  24. Urata, R. A. & Toon, O. B. Simulations of the martian hydrologic cycle with a general circulation model: Implications for the ancient martian climate. Icarus 226, 229–250 (2013).

    Article  Google Scholar 

  25. Ramirez, R. M. et al. Warming early Mars with CO2 and H2 . Nature Geosci. 7, 59–63 (2014).

    Article  Google Scholar 

  26. Catling, D. C. in Encyclopedia of Paleoclimatology and Ancient Environments (ed Gornitz, V.) 66–75 (Springer, 2009).

    Book  Google Scholar 

  27. Van Berk, W., Fu, Y. & Ilger, J-M. Reproducing early martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg–Fe–Ca carbonate identified in the Comanche rock outcrops on Mars. J. Geophys. Res. 117, E10008 (2012).

    Article  Google Scholar 

  28. Som, S., Catling, D., Harnmeijer, J., Polivka, P. & Buick, R. Air density 2.7 billion years ago limited to less than twice present levels by fossil raindrop imprints. Nature 484, 359–362 (2012).

    Article  Google Scholar 

  29. McEwen, A. S. & Bierhaus, E. B. The importance of secondary cratering to age constraints on planetary surfaces. Ann. Rev. Earth Planet. Sci. 34, 535–567 (2006).

    Article  Google Scholar 

  30. Werner, S. C., Ivanov, B. A. & Neukum, G. Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains. Icarus 200, 406–417 (2009).

    Article  Google Scholar 

  31. Robbins, S. J., Di Achille, G. & Hynek, B. M. The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. Icarus 211, 1179–1203 (2011).

    Article  Google Scholar 

  32. Cassata, W. et al. Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere. Earth Planet. Sci. Lett. 221, 461–465 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank I. Daubar, J. Dufek, B. Ehlmann, W. Fischer, V. Ganti, I. Halevy, J. Kasting, K. Lewis, M. Manga, R. Ramirez, M. Rice, A. Soto and R. Wordsworth for preprints and discussions. We thank the HiRISE team and the CTX team. This work was financially supported by an O.K. Earl Fellowship (to E.S.K.) and by the US taxpayer through NASA grants NNX11AF51G (to O.A.) and NNX11AQ64G (to J-P.W.).

Author information

Authors and Affiliations

Authors

Contributions

E.S.K. designed research, picked craters, carried out the data–model comparison and drafted the main text. J-P.W. wrote the forward model of impactor–atmosphere interactions. A.L. built the digital terrain models and wrote the corresponding Supplementary text. O.A. supervised research. All authors contributed to the interpretation of the results and to the revisions.

Corresponding author

Correspondence to Edwin S. Kite.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 9756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kite, E., Williams, JP., Lucas, A. et al. Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters. Nature Geosci 7, 335–339 (2014). https://doi.org/10.1038/ngeo2137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing