Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Slow slip and frictional transition at low temperature at the Hikurangi subduction zone

Abstract

Shallow portions of faults exhibit brittle, stick–slip behaviour that gives way to more stable sliding with increasing depth, limiting the depths to which earthquake-inducing slip can occur. The increase of temperature with depth is often assumed to transform friction in the fault from velocity-weakening (unstable) to velocity-strengthening (stable), and to change conditions from brittle to ductile1,2,3,4,5. A temperature of 350 C has been suggested to mark the base of the frictionally unstable portion of the fault, which becomes free slipping at depth where temperatures rise above 450 C (refs 2, 4, 6). Here, we show that both slow-slip events and the geodetically observed transition from fault locking to free slip at the Hikurangi subduction zone east of the North Island, New Zealand occur at temperatures as low as 100 C, suggesting that temperature is not a primary control on either slow-slip or fault-locking processes at the Hikurangi margin. Although globally shallow slow-slip events are rare, five out of seven events observed so far at the Hikurangi margin are less than 15 km deep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic and physiographic map of the New Zealand region.
Figure 2: Depth contours, locking distribution, temperatures and slow-slip regions.
Figure 3: Comparisons of estimated and observed heat-flow values from the Hikurangi margin.

Similar content being viewed by others

References

  1. Scholz, C. The Mechanics of Earthquakes and Faulting 2nd edn (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  2. Hyndman, R. D. & Wang, K. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. J. Geophys. Res. 98, 2039–2060 (1993).

    Article  Google Scholar 

  3. Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D. & Sagiya, T. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J. Geophys. Res. 108, 2026 (2003).

    Google Scholar 

  4. Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112, B09404 (2007).

    Google Scholar 

  5. Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45doi:2006RG000208 (2007).

  6. Oleskevich, D., Hyndman, R. D. & Wang, K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, S. W. Japan, Alaska, and Chile. J. Geophys. Res. 104, 14965–14991 (1999).

    Article  Google Scholar 

  7. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  8. Linde, A. T., Gladwin, M. T., Johnston, M. J. S. & Gwyther, R. L. A slow earthquake sequence on the San Andreas fault. Nature 383, 65–68 (1996).

    Article  Google Scholar 

  9. Lowry, A. P. Resonant slow fault slip in subduction zones forced by climatic load stress. Nature 442, 802–805 (2006).

    Article  Google Scholar 

  10. Wallace, L. M., Beavan, J., McCaffrey, R. & Darby, D. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res. 109, B12406 (2004).

    Article  Google Scholar 

  11. Reyners, M. Plate coupling and the hazard of large subduction thrust earthquakes at the Hikurangi subduction zone, New Zealand. N. Z. J. Geol. Geophys. 41, 343–354 (1998).

    Article  Google Scholar 

  12. Beavan, J., Wallace, L. M., Fletcher, H. J. & Douglas, A. in Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, International Association of Geodesy Symposia, 130, Cairns, Australia, 22–26 August, 2005 (eds Tregoning, P. & Rizos, C.) 438–444 (Springer, Berlin, 2007).

    Book  Google Scholar 

  13. Douglas, A., Beavan, J., Wallace, L. & Townend, J. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32, L16305 (2005).

    Article  Google Scholar 

  14. McCaffrey, R., Wallace, L., Beavan, J. & Douglas, A. Slow slip events, temperature, and interseismic coupling at the Hikurangi subduction zone, New Zealand. Eos Trans. AGU 88 (2007). Jt. Assem. Suppl. Abstract G31A-05.

  15. Wallace, L. M. & Beavan, J. A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand. Geophys. Res. Lett. 33, L11301 (2006).

    Article  Google Scholar 

  16. Molnar, P. & England, P. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet. Sci. Lett. 131, 57–70 (1995).

    Article  Google Scholar 

  17. Mortimer, N. & Parkinson, D. Hikurangi Plateau; a Cretaceous large igneous province in the Southwest Pacific Ocean. J. Geophys. Res. 101, 687–696 (1996).

    Article  Google Scholar 

  18. Ansell, J. H. & Bannister, S. C. Shallow morphology of the subducted Pacific plate along the Hikurangi margin, New Zealand. Phys. Earth Planet. Inter. 93, 3–20 (1996).

    Article  Google Scholar 

  19. Townend, J. Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand. Mar. Geol. 141, 209–220 (1997).

    Article  Google Scholar 

  20. Henrys, S. A., Ellis, S. & Uruski, C. Conductive heat flow variations from bottom-simulating reflectors on the Hikurangi margin, New Zealand. Geophys. Res. Lett. 30doi:10.1029/2002GL015772 (2003).

  21. Gosnold, W. D. Jr & Panda, B. Proc. of the Fifth International Mtg, Heat Flow and Structure of the Lithosphere, Kostelec, Czechia 22 (2001) http://www.geo.lsa.umich.edu/IHFC/heatflow.html.

    Google Scholar 

  22. Grevemeyer, I., Diaz-Naveas, J. L., Ranero, C. R., Villinger, H. W. & Ocean Drilling Program Leg 202 Scientific Party. Heat flow over the descending Nazca plate in central Chile, 32 S to 41 S: Observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet. Sci. Lett. 213, 285–298 (2003).

    Article  Google Scholar 

  23. Lewis, K. B., Collot, J.-Y. & Lallemande, S. E. The dammed Hikurangi Trough: A channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand-France GeodyNZ Project). Basin Res. 10, 441–468 (1998).

    Article  Google Scholar 

  24. Lamb, S. Shear stresses on megathrusts: Implications for mountain building behind subduction zones. J. Geophys. Res. 111, 1–24 (2006).

    Google Scholar 

  25. Sagiya, T. Interplate coupling in the Kanto District, Central Japan, and the Boso Peninsula silent earthquake in May 1996. Pure Appl. Geophys. 161, 2327–2342 (2004).

    Article  Google Scholar 

  26. Fournier, T. J. & Freymueller, J. T. Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophys. Res. Lett. 34doi:10.1029/2006GL029073 (2007).

  27. Rubinstein, J. L. et al. Non-volcanic tremor driven by large transient shear stresses. Nature 448, 579–582 (2007).

    Article  Google Scholar 

  28. Arnadottir, T. S., Thornley, S., Pollitz, F. & Darby, D. Spatial and temporal strain rate variations at the northern Hikurangi margin, New Zealand. J. Geophys. Res. 104, 4931–4944 (1999).

    Article  Google Scholar 

  29. Doser, D. I. & Webb, T. H. Source parameters of large historical (1917–1961) earthquakes, North Island, New Zealand. Geophys. J. Int. 152, 795–832 (2003).

    Article  Google Scholar 

  30. Beavan, J., Tregoning, P., Bevis, M., Kato, T. & Meertens, C. Motion and rigidity of the Pacific plate and implications for plate boundary deformation. J. Geophys. Res. 107, 2261 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

R. Sutherland, M. Reyners and Y. Liu provided helpful comments on the manuscript. Funding for this work was provided by the New Zealand Earthquake Commission (EQC), the New Zealand Foundation for Research, Science and Technology and GNS Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert McCaffrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCaffrey, R., Wallace, L. & Beavan, J. Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nature Geosci 1, 316–320 (2008). https://doi.org/10.1038/ngeo178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing