Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation

Abstract

The establishment of terrestrial plants during the Palaeozoic era was one of the most significant changes to the Earth system during the Phanerozoic eon. The continuing evolution and expansion of land plants irrevocably altered the alluvial landscape: the broad, unconfined and unconsolidated blankets of coarse sediment found at the start of the Cambrian period were replaced by a diverse array of braided and meandering channel styles and stable floodplains by the end of the Devonian period. Here we show that the first appearance of a sedimentary facies suite attributed to low-energy, organic-rich river systems with multiple channels and stable alluvial islands, known as anabranching or anastomosing rivers, occurred during the Carboniferous period. Our field studies and literature review demonstrate that the appearance of these rivers coincides with the continuing evolution of tree-like plants. We suggest that increased floodplain stability and new triggers for channel avulsion were provided by the increase in complexity and diversity of root assemblages, density of floodplain forests and production of woody debris associated with expansion of arborescence. We conclude that the expansion of tree habitats led to the crossing of a threshold in vegetative control of floodplain and river morphology during the Carboniferous.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rise of the anabranching (anastomosing) stream.
Figure 2: Sedimentary signatures of fixed-channel alluvial plains.
Figure 3: Stable bank margins of fixed-channel deposits.

Similar content being viewed by others

References

  1. Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    Article  Google Scholar 

  2. Tooth, S., Jansen, J. D., Nanson, G. C., Coulthard, T. J. & Pietsch, T. Riparian vegetation and the late Holocene development of an anabranching river: Magela Creek, northern Australia. Geol. Soc. Am. Bull. 120, 1021–1035 (2008).

    Article  Google Scholar 

  3. Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).

    Article  Google Scholar 

  4. Melvin, J. Evolving fluvial style in the Kekiktuk Formation (Mississippian), Endicott Field Area, Alaska: Base level response to contemporaneous tectonism. AAPG Bull. 77, 1723–1744 (1993).

    Google Scholar 

  5. Nanson, G. C. & Knighton, A. D. Anabranching rivers: Their cause, character and classification. Earth Surf. Process. Landforms 21, 217–239 (1996).

    Article  Google Scholar 

  6. North, C. P., Nanson, G. C. & Fagan, S. D. Recognition of the sedimentary architecture of dryland anabranching (anastomosing) streams. J. Sedim. Res. 77, 925–938 (2007).

    Article  Google Scholar 

  7. Friend, P. F. in Modern and Ancient Fluvial Systems (eds Collinson, J. D. & Lewin, J.) 345–354 (Blackwell, 1983).

    Book  Google Scholar 

  8. Gibling, M. R. Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. J. Sedim. Res. 76, 731–770 (2006).

    Article  Google Scholar 

  9. Gibling, M. R., Nanson, G. G. & Maroulis, J. C. Anastomosing river sedimentation in the Channel Country of central Australia. Sedimentology 45, 595–619 (1998).

    Article  Google Scholar 

  10. Marriott, S. B., Wright, V. P. & Williams, B. P. J. in Fluvial Sedimentology VII (eds Blum, M. D., Marriott, S. B. & Leclair, S. F.) 517–529 (Blackwell, 2005).

    Book  Google Scholar 

  11. Weissmann, G. S. et al. Fluvial form in modern continental basins: Distributive fluvial systems. Geology 38, 39–42 (2010).

    Article  Google Scholar 

  12. Davies, N. S., Gibling, M. R. & Rygel, M. C. Alluvial facies during the Palaeozoic greening of the land: Case studies, conceptual models and modern analogues. Sedimentology 58, 220–258 (2011).

    Article  Google Scholar 

  13. Davies, N. S. & Gibling, M. R. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 38, 51–54 (2010).

    Article  Google Scholar 

  14. Abernethy, B. & Rutherfurd, I. D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surf. Processes Landforms 25, 921–937 (2000).

    Article  Google Scholar 

  15. Hales, T. C., Ford, C. R., Hwang, T., Vose, J. M. & Band, L. E. Topographic and ecologic controls on root reinforcement. J. Geophys. Res. 114, F03013 (2009).

    Google Scholar 

  16. Gibling, M. R. & Rust, B. R. Ribbon sandstones in the Pennsylvanian Waddens Cove Formation, Sydney Basin, Atlantic Canada: The influence of siliceous duricrusts on channel-body geometry. Sedimentology 37, 45–65 (1990).

    Article  Google Scholar 

  17. Nanson, G. C., Jones, B. G., Price, D. M. & Pietsch, T. J. Rivers turned to rock: Late Quaternary alluvial induration influencing the behaviour and morphology of an anabranching river in Australia’s monsoon tropics. Geomorphology 70, 398–420 (2005).

    Article  Google Scholar 

  18. McNamara, J. P. & Kane, D. L. The impact of a shrinking cryosphere on the form of Arctic alluvial channels. Hydrol. Process. 23, 159–168 (2009).

    Article  Google Scholar 

  19. Hillier, R. D., Edwards, D. & Morrissey, L. B. Sedimentological evidence for rooting structures in the Early Devonian Anglo-Welsh Basin (UK), with speculation on their producers. Palaeogeogr. Palaeoclimatol. Palaeoecol. 270, 366–380 (2008).

    Article  Google Scholar 

  20. Hao, S., Xue, J., Guo, D. & Wang, D. Earliest rooting system and root:shoot ratio from a new Zosterophyllum plant. New Phytol. 185, 217–225 (2010).

    Article  Google Scholar 

  21. Raven, J. A. & Andrews, M. Evolution of tree nutrition. Tree Physiol. 30, 1050–1071 (2010).

    Article  Google Scholar 

  22. Mintz, J. S., Driese, S. G. & White, J. D. Environmental and ecological variability of Middle Devonian (Givetian) forests in Appalachian Basin paleosols, New York, United States. Palaios 25, 85–96 (2010).

    Article  Google Scholar 

  23. Falcon-Lang, H. J. & Bashforth, A. R. Morphology, anatomy, and upland ecology of large cordaitalean trees from the Middle Pennsylvanian of Newfoundland. Rev. Palaeobot. Palynol. 135, 223–243 (2005).

    Article  Google Scholar 

  24. Dupuy, L., Fourcaud, T. & Stokes, A. A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278, 119–134 (2005).

    Article  Google Scholar 

  25. DiMichele, W. A., Cecil, C. B., Montanez, I. P. & Falcon-Lang, H. J. Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. Int. J. Coal Geol. 83, 329–344 (2010).

    Article  Google Scholar 

  26. Decombeix, A. L., Meyer-Berthaud, B. & Galtier, J. Transitional changes in arborescent lignophytes at the Devonian-Carboniferous boundary. J. Geol. Soc. 168, 547–557 (2011).

    Article  Google Scholar 

  27. DiMichele, W. A. & Falcon-Lang, H. J. Pennsylvanian ‘fossil forests’ in growth position (T-0 assemblages): Origin, taphonomic bias and palaeoecological insights. J. Geol. Soc. 168, 585–605 (2011).

    Article  Google Scholar 

  28. DiMichele, W. A., Falcon-Lang, H. J., Nelson, W. J., Elrick, S. D. & Ames, P. R. Ecological gradients within a Pennsylvanian mire forest. Geology 35, 415–418 (2007).

    Article  Google Scholar 

  29. Falcon-Lang, H. J. & Bashforth, A. R. Pennsylvanian uplands were forested by giant cordaitalean trees. Geology 32, 417–420 (2004).

    Article  Google Scholar 

  30. Falcon-Lang, H. J. et al. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands. Geology 37, 923–926 (2009).

    Article  Google Scholar 

  31. Falcon-Lang, H. J. et al. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome. Geology 39, 371–374 (2011).

    Article  Google Scholar 

  32. Jones, L. S. & Schumm, S. A. in Fluvial Sedimentology VI (eds Smith, N. D. & Rogers, J.) 171–178 (Blackwell, 1999).

    Google Scholar 

  33. Abbe, T. B. & Montgomery, D. R. Patterns and processes of wood debris accumulation in the Queets River basin, Washington. Geomorphology 51, 81–107 (2003).

    Article  Google Scholar 

  34. Gibling, M. R., Bashforth, A. R., Falcon-Lang, H. J., Allen, J. P. & Fielding, C. R. Log jams and flood sediment buildup caused channel abandonment and avulsion in the Pennsylvanian of Atlantic Canada. J. Sedim. Res. 80, 268–287 (2010).

    Article  Google Scholar 

  35. Rowe, N. & Speck, T. in The Evolution of Plant Physiology (eds Helmsley, A. R. & Poole, I.) 297–326 (Elsevier, 2004).

    Book  Google Scholar 

  36. Braudrick, C. A., Grant, G. E., Ishikawa, Y. & Ikeda, H. Dynamics of wood transport in streams: A flume experiment. Earth Surf. Process. Landforms 22, 669–683 (1997).

    Article  Google Scholar 

  37. Corenblit, D., Steiger, J., Gurnell, A. M., Tabacchi, E. & Roques, L. Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surf. Process. Landforms 34, 1790–1810 (2009).

    Article  Google Scholar 

  38. Corenblit, D. et al. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth Sci. Rev. 106, 307–331 (2011).

    Article  Google Scholar 

  39. Eberth, D. A. & Miall, A. D. Stratigraphy, Sedimentology and evolution of a vertebrate-bearing, braided to anastomosed fluvial system, Cutler Formation (Permian-Pennsylvanian), north-central New Mexico. Sedim. Geol. 72, 225–252 (1991).

    Article  Google Scholar 

  40. Rygel, M. C. & Gibling, M. R. Natural geomorphic variability recorded in a high-accommodation setting: Fluvial architecture of the Pennsylvanian Joggins Formation of Atlantic Canada. J. Sedim. Res. 76, 1230–1251 (2006).

    Article  Google Scholar 

  41. Rust, B. R., Gibling, M. R. & Legun, A. S. in Sedimentology of Coal and Coal-bearing Sequences (eds Rahmani, R. A. & Flores, R. M.) 105–120 (Blackwell, 1984).

    Google Scholar 

  42. Kędzior, A., Gradziński, R., Doktor, M. & Gmur, D. Sedimentary history of a Mississippian to Pennsylvanian coal-bearing succession: An example from the Upper Silesia coal basin, Poland. Geol. Mag. 144, 487–496 (2007).

    Article  Google Scholar 

  43. Plint, A. G. & Van de Poll, H. W. Alluvial fan and piedmont sedimentation in the Tynemouth Creek Formation (Lower Pennsylvanian) of southern New Brunswick. Maritime Sedim. Atlantic Geol. 18, 104–128 (1982).

    Google Scholar 

  44. Rust, B. R. & Legun, A. S. in Modern and Ancient Fluvial Systems (eds Collinson, J. D. & Lewin, J.) 385–392 (Blackwell, 1983).

    Book  Google Scholar 

  45. Izart, A., Palain, C., Malartre, F., Fleck, S. & Michels, R. Paleoenvironments, paleoclimates and sequences of Westphalian deposits of Lorraine coal basin (Upper Carboniferous, NE France). Bull. Soc. Geol. Fr. 176, 301–315 (2005).

    Article  Google Scholar 

  46. Dreesen, R., Bossiroy, D., Dusar, M., Flores, R. M. & Verkaeren, P. in European Coal Geology (eds Whateley, M. K. G. & Spears, D. A.) 215–232 (Geological Society, 1995).

    Google Scholar 

  47. Gibling, M. R. & Wightman, W. G. Palaeovalleys and protozoan assemblages in a Late Carboniferous cyclothem, Sydney Basin, Nova Scotia. Sedimentology 41, 699–719 (1994).

    Article  Google Scholar 

  48. Weedman, S. D. in Global Geological Record of Lake Basins (eds Gierlowski-Kordesch, E. & Kelts, K. R.) 127–134 (Cambridge Univ.Press, 1994).

    Google Scholar 

  49. Net, L. I., Alonso, M. S. & Limarino, C. O. Source rock and environmental control on clay mineral associations, lower section of Paganzo Group (Carboniferous), northwest Argentina. Sedim. Geol. 152, 183–199 (2001).

    Article  Google Scholar 

  50. Capuzzo, N. & Wetzel, A. Facies and basin architecture of the Late Carboniferous Salvan-Dorenaz continental basin (Western Alps, Switzerland/France). Sedimentology 51, 675–697 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded from a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to M.R.G. We thank A. Bashforth, B. DiMichele, D. Eberth, H. Falcon-Lang, R. Hillier, A. Kedzior, M. Leeder, S. Marriott, M. Rygel, L. Soreghan, D. Sweet, G. Weissmann and K. Ziegler for information about field localities and for their valuable insights on the concepts presented here.

Author information

Authors and Affiliations

Authors

Contributions

N.S.D. and M.R.G. jointly conceived and undertook the study and fieldwork involved. Both authors contributed to the writing of the manuscript. The literature survey (Supplementary Information) was undertaken by N.S.D. Outcrops figured in Fig. 3 were identified and described by M.R.G.

Corresponding author

Correspondence to Neil S. Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, N., Gibling, M. Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation. Nature Geosci 4, 629–633 (2011). https://doi.org/10.1038/ngeo1237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing