Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High rates of sea-level rise during the last interglacial period

Abstract

The last interglacial period, Marine Isotope Stage (MIS) 5e, was characterized by global mean surface temperatures that were at least 2 C warmer than present1. Mean sea level stood 4–6 m higher than modern sea level2,3,4,5,6,7,8,9,10,11,12,13, with an important contribution from a reduction of the Greenland ice sheet1,14. Although some fossil reef data indicate sea-level fluctuations of up to 10 m around the mean3,4,5,6,7,8,9,11, so far it has not been possible to constrain the duration and rates of change of these shorter-term variations. Here, we use a combination of a continuous high-resolution sea-level record, based on the stable oxygen isotopes of planktonic foraminifera from the central Red Sea15,16,17,18, and age constraints from coral data to estimate rates of sea-level change during MIS-5e. We find average rates of sea-level rise of 1.6 m per century. As global mean temperatures during MIS-5e were comparable to projections for future climate change under the influence of anthropogenic greenhouse-gas emissions19,20, these observed rates of sea-level change inform the ongoing debate about high versus low rates of sea-level rise in the coming century21,22.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stable isotope and derived sea-level records for central Red Sea cores KL11 and KL09.
Figure 2: MIS-5e high-resolution Red Sea sea-level reconstruction for KL11 and KL09 versus coral data.

Similar content being viewed by others

References

  1. Otto-Bliesner, B. L. et al. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    Article  Google Scholar 

  2. McCulloch, M. T. & Esat, T. The coral record of last interglacial sea levels and sea surface temperatures. Chem. Geol. 169, 107–129 (2000).

    Article  Google Scholar 

  3. Stirling, C. H., Esat, T. M., Lambeck, K. & McCulloch, M. T. Timing and duration of the Last Interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 160, 745–762 (1998).

    Article  Google Scholar 

  4. Thompson, W. G. & Goldstein, S. L. Open-system coral ages reveal persistent suborbital sea-level cycles. Science 308, 401–404 (2005).

    Article  Google Scholar 

  5. Plaziat, J. C. et al. Mise en evidence, sur la côte récifale d’Egypte, d’une régression interrompant le plus haut niveau du Dernier Interglaciaire (5e): Un nouvel indice de variations glacio-eustatiques haute fréquence au Pléistocène? Bull. Soc. Geol. Fr. 169, 115–125 (1998).

    Google Scholar 

  6. Plaziat, J. C. et al. Quaternary changes in the Egyptian shoreline of the northwestern Red Sea and Gulf of Suez. Quat. Internat. 29/30, 11–22 (1995).

    Article  Google Scholar 

  7. Orszag-Sperber, F., Plaziat, J. C., Baltzer, F. & Purser, B. H. Gypsum salina-coral reef relationships during the Last Interglacial (Marine Isotopic Stage 5e) on the Egyptian Red Sea coast: A Quaternary analogue for Neogene marginal evaporites? Sedim. Geol. 140, 61–85 (2001).

    Article  Google Scholar 

  8. Neumann, A. C. & Hearty, P. J. Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 24, 775–778 (1996).

    Article  Google Scholar 

  9. Chen, J. H., Curran, H. A., White, R. & Wasserburg, G. J. Precise chronology of the last interglacial period: 234U–230Th data from fossil coral reefs in the Bahamas. Geol. Soc. Am. Bull. 103, 82–97 (1991).

    Article  Google Scholar 

  10. El-Asmar, H. M. Quaternary isotope stratigraphy and paleoclimate of coral reef terraces, Gulf of Aqaba, South Sinai, Egypt. Quat. Sci. Rev. 16, 911–924 (1997).

    Article  Google Scholar 

  11. Bruggemann, J. H. et al. Stratigraphy, palaeoenvironments and model for the deposition of the Abdur Reef Limestone: Context for an important archaeological site from the last interglacial on the Red Sea coast of Eritrea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 179–206 (2004).

    Article  Google Scholar 

  12. Walter, R. C. et al. Early human occupation of the Red Sea coast of Eritrea during the last interglacial. Nature 405, 65–69 (2000).

    Article  Google Scholar 

  13. Stirling, C. H., Esat, T. M., McCulloch, M. T. & Lambeck, K. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial. Earth Planet. Sci. Lett. 135, 115–130 (1995).

    Article  Google Scholar 

  14. Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000).

    Article  Google Scholar 

  15. Siddall, M., Bard, E., Rohling, E. J. & Hemleben, Ch. Sea-level reversal during Termination II. Geology 34, 817–820 (2006).

    Article  Google Scholar 

  16. Arz, H. W. et al. Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat. Sci. Rev. 26, 312–321 (2007).

    Article  Google Scholar 

  17. Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).

    Article  Google Scholar 

  18. Siddall, M. et al. Understanding the Red Sea response to sea level. Earth Planet. Sci. Lett. 225, 421–434 (2004).

    Article  Google Scholar 

  19. Folland, C. K. et al. in Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (ed. Houghton, J. T. et al.) 99–181 (Cambridge Univ. Press, Cambridge and New York, 2001).

    Google Scholar 

  20. Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice sheet. Nature 428, 616 (2004).

    Article  Google Scholar 

  21. Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).

    Article  Google Scholar 

  22. Church, J. M. et al. in Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (ed. Houghton, J. T. et al.) 639–693 (Cambridge Univ. Press, Cambridge and New York, 2001).

    Google Scholar 

  23. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  24. Blanchon, P. & Shaw, J. Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23, 4–8 (1995).

    Article  Google Scholar 

  25. Stanford, J. D. et al. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 21, PA4103 (2006).

    Article  Google Scholar 

  26. Cazenave, A. How fast are the ice sheets melting? Science 314, 1250–1252 (2006).

    Article  Google Scholar 

  27. Hemleben, Ch. et al. Three hundred and eighty thousand year-long stable isotope and faunal records from the Red Sea. Paleoceanography 11, 147–156 (1996).

    Article  Google Scholar 

  28. Schellmann, G. & Radtke, U. A revised morpho- and chronostratigraphy of the late and middle Pleistocene coral reef terraces on Southern Barbados (West Indies). Earth Sci. Rev. 64, 157–187 (2004).

    Article  Google Scholar 

  29. Scholz, A., Mangini, A. & Felis, T. U-series dating of diagenetically altered fossil reef corals. Earth Planet. Sci. Lett. 218, 163–178 (2004).

    Article  Google Scholar 

  30. Hearty, P. J., Neumann, A. C. & O’Leary, M. J. Comment on ‘Record of MIS5 sea-level highstands based on U/Th dated coral terraces of Haiti’ by Dumas et al. [Quaternary International 2006 106–118]. Quat. Internat. 162/163, 205–208 (2007).

    Article  Google Scholar 

  31. Rohling, E. J. et al. African monsoon variability during the previous interglacial maximum. Earth Planet. Sci. Lett. 202, 61–75 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all colleagues who have offered advice that helped shape the arguments in this manuscript, I. Schmeltzer, S. Geiselhart and H. Erlenkeuser for work on core KL11, and G. Trommer and M. Siccha for work on KL09. H. Elderfield provided valuable feedback to the Mg/Ca pilot study, and I. Marshall and C. Hayward helped with scanning electron microscope and electron microprobe analyses. This study was supported by the UK Natural Environment Research Council (NERC, NE/C003152/1), the German Science Foundation (DFG, He 697/17; Ku 2259/3) and EC project STOPFEN (HPRN-CT-2002-00221).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. J. Rohling or Ch. Hemleben.

Supplementary information

Supplementary Information

Supplementary table S1 and supplementary figures S1, S2 and S3 (PDF 939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohling, E., Grant, K., Hemleben, C. et al. High rates of sea-level rise during the last interglacial period. Nature Geosci 1, 38–42 (2008). https://doi.org/10.1038/ngeo.2007.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo.2007.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing