Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variation in gene expression within and among natural populations

Abstract

Evolution may depend more strongly on variation in gene expression than on differences between variant forms of proteins1. Regions of DNA that affect gene expression are highly variable, containing 0.6% polymorphic sites2. These naturally occurring polymorphic nucleotides can alter in vivo transcription rates3,4,5,6,7. Thus, one might expect substantial variation in gene expression between individuals. But the natural variation in mRNA expression for a large number of genes has not been measured. Here we report microarray studies addressing the variation in gene expression within and between natural populations of teleost fish of the genus Fundulus. We observed statistically significant differences in expression between individuals within the same population for approximately 18% of 907 genes. Expression typically differed by a factor of 1.5, and often more than 2.0. Differences between populations increased the variation. Much of the variation between populations was a positive function of the variation within populations and thus is most parsimoniously described as random. Some genes showed unexpected patterns of expression—changes unrelated to evolutionary distance. These data suggest that substantial natural variation exists in gene expression and that this quantitative variation is important in evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loop design used in microarray studies.
Figure 2: Error variance versus significance between individuals within populations.
Figure 3: Frequency distributions of range of gene expression levels among individuals within a population.
Figure 4: Pattern and significance of gene expression between populations.
Figure 5: Variation between and within populations.
Figure 6: Patterns of gene expression for northern F. heteroclitus population versus combined southern F. heteroclitus and F. grandis populations.

Similar content being viewed by others

References

  1. King, M.C. & Wilson, A.C. Evolution at two levels: molecular similarities and biological differences between humans and chimpanzees. Science 188, 107–116 (1975).

    CAS  PubMed  Google Scholar 

  2. Stephens, J.C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Segal, J.A., Barnett, J.L. & Crawford, D.L. Functional analyses of natural variation in Sp1 binding sites of a TATA-less promoter. J. Mol. Evol. 49, 736–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Crawford, D.L., Segal, J.A. & Barnett, J.L. Evolutionary analysis of TATA-less proximal promoter function. Mol. Biol. Evol. 16, 194–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Beaty, J.S., West, K.A. & Nepom, G.T. Functional effects of a natural polymorphism in the transcriptional regulatory sequence of HLA-DQB1. Mol. Cell. Biol. 15, 4771–4782 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Antonarakis, S.E. et al. β-Thalassemia in American Blacks: novel mutations in the “TATA” box and an acceptor splice site. Proc. Natl Acad. Sci. USA 81, 1154–1158 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koivisto, U.M., Palvimo, J.J., Janne, O.A. & Kontula, K. A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia. Proc. Natl Acad. Sci. USA 91, 10526–10530 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewohl, J.M., Dodd, P.R., Mayfield, R.D. & Harris, R.A. Application of DNA microarrays to study human alcoholism [Review]. J. Biomed. Sci. 8, 28–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. DeRisi, J. et al. Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Lau, W.Y. et al. Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis. Oncol. Res. 12, 59–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Lotrich, V.A. Summer home range and movements of Fundulus heteroclitus (Pisces: Cyprinodotidae) in tidal creek. Ecology 56, 191–198 (1975).

    Article  Google Scholar 

  14. Brown, B.L. & Chapman, R.W. Gene flow and mitochondrial DNA variation in the killifish Fundulus heteroclitus. Evolution 45, 1147–1161 (1991).

    Article  PubMed  Google Scholar 

  15. Podrabsky, J.E., Javillonar, C., Hand, S.C. & Crawford, D.L. Intraspecific variation in aerobic metabolism and glycolytic enzyme expression in heart ventricles from Fundulus heteroclitus. Am. J. Physiol. 279, R2344–R2348 (2000).

    CAS  Google Scholar 

  16. Pierce, V.A. & Crawford, D.L. Phylogenetic analysis of glycolytic enzyme expression. Science 275, 256–259 (1997).

    Article  Google Scholar 

  17. Kerr, M., Martin, M. & Churchill, G. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kerr, M.K. & Churchill, G.A. Statistical design and the analysis of gene expression microarray data. Genet. Res. 77, 123–128 (2001).

    CAS  PubMed  Google Scholar 

  19. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29, 389–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Sokal, R.R. & Rohlf, F.J. Biometry (W.H. Freeman, New York, 1981).

  21. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Crawford, D.L. & Powers, D.A. Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc. Natl Acad. Sci. USA 86, 9365–9369 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

  25. Bernardi, G. & Powers, D.A. Phylogenetic relationships among nine species from the genus Fundulus (Cyprinodontiformes, Fundulidae) inferred from sequences of the cytochrome B. Copeia 1995, 469–473 (1995).

    Article  Google Scholar 

  26. Cashner, R.C., Rogers, J.S. & Grady, J.M. Phylogenetic studies of the genus Fundulus. in Systematic, Historical Ecology and North American Freshwater Fishes (ed. Mayden, R.L.) 421–437 (Stanford Univ. Press, Stanford, California, 1992).

    Google Scholar 

  27. Wiley, E.O. A study of the evolutionary relationships of Fundulus topminnows (Teleostei: Fundulidae). Am. Zool. 26, 121–130 (1986).

    Article  Google Scholar 

  28. Westfall, P.H. & Young, S.S. Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment (Wiley, New York, 1993).

  29. Oleksiak, M.F., Kolell, K. & Crawford, D.L. The utility of natural populations for microarray analyses: isolation of genes necessary for functional genomic studies. Mar. Biotech. 3, S203–S211 (2001).

    Article  CAS  Google Scholar 

  30. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a National Science Foundation BioInformatics post-doctoral fellowship to M.F.O., a National Cancer Institute grant to G.A.C. and a National Science Foundation Integrative Biology and Neuroscience grant to D.L.C. Additional support was provided by the School of Biological Science through M. Marino-Carrion. We would like to thank K. Horgan of M.J. Research for arranging the donation of Tetrad-thermal cycler, Motorola for donating the activated slides used in the production of microarrays and AP-Biotech and specifically R. Feldman for use of MegaBace used to re-sequence cDNAs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Crawford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleksiak, M., Churchill, G. & Crawford, D. Variation in gene expression within and among natural populations. Nat Genet 32, 261–266 (2002). https://doi.org/10.1038/ng983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing