Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer

Abstract

Ataxia-telangiectasia is characterized by radiosensitivity, genome instability and predisposition to cancer1,2. Heterozygous carriers of ATM, the gene defective in ataxia-telangiectasia, have a higher than normal risk of developing breast and other cancers3,4,5,6. We demonstrate here that Atm 'knock-in' (Atm-ΔSRI) heterozygous mice harboring an in-frame deletion corresponding to the human 7636del9 mutation show an increased susceptibility to developing tumors. In contrast, no tumors are observed in Atm knockout (Atm+/−) heterozygous mice. In parallel, we report the appearance of tumors in 6 humans from 12 families who are heterozygous for the 7636del9 mutation. Expression of ATM cDNA containing the 7636del9 mutation had a dominant-negative effect in control cells, inhibiting radiation-induced ATM kinase activity in vivo and in vitro. This reduces the survival of these cells after radiation exposure and enhances the level of radiation-induced chromosomal aberrations. These results show for the first time that mouse carriers of a mutated Atm that are capable of expressing Atm have a higher risk of cancer. This finding provides further support for cancer predisposition in human ataxia-telangiectasia carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atm-ΔSRI heterozygous mice are susceptible to developing a variety of tumors.
Figure 2: Expression of wildtype and mutant Atm.
Figure 3: Effect of ionizing radiation on survival and ATM kinase activity in human and mouse cells.
Figure 4: Effect of radiation on ATM kinase activity in control (C3ABR) lymphoblastoid cells transfected with full-length ATM cDNA (pMAT1) or 7636del9 mutant from (pΔSRI).

Similar content being viewed by others

References

  1. Lavin, M.F. & Shiloh, Y. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol. 15, 177–202 (1997).

    Article  CAS  Google Scholar 

  2. Rotman, G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135–6144 (1999).

    Article  CAS  Google Scholar 

  3. Swift, M., Morrell, D., Massey, R.B. & Chase, C.L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med. 325, 1831–1836 (1991).

    Article  CAS  Google Scholar 

  4. Inskip, H.M., Kinlen, L.J., Taylor, A.M., Woods, C.G. & Arlett, C.F. Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br. J. Cancer 79, 1304–1307 (1999).

    Article  CAS  Google Scholar 

  5. Olsen, J.H. et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J. Natl Cancer Inst. 93, 121–127 (2001).

    Article  CAS  Google Scholar 

  6. Athma, P., Rappaport, R. & Swift, M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet. Cytogenet. 92, 130–134 (1996).

    Article  CAS  Google Scholar 

  7. Fitzgerald, M.G. et al. Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nature Genet. 15, 307–310 (1997).

    Article  CAS  Google Scholar 

  8. Izatt, L. et al. Identification of germline missense mutations and rare allelic variants in the ATM gene in early-onset breast cancer. Genes Chromosomes Cancer 26, 286–294 (1999).

    Article  CAS  Google Scholar 

  9. Teraoka, S.N. et al. Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92, 479–487 (2001).

    Article  CAS  Google Scholar 

  10. Dörk, T. et al. Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res. 61, 7608–7615 (2001).

    PubMed  Google Scholar 

  11. Spring, K. et al. Atm knock-in mice harboring an in-frame deletion corresponding to the human ATM 7636del9 common mutation exhibit a variant phenotype. Cancer Res. 61, 4561–4568 (2001).

    CAS  PubMed  Google Scholar 

  12. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  13. Elson, A. et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl Acad. Sci. USA 93, 13084–13089 (1996).

    Article  CAS  Google Scholar 

  14. Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I. & McKinnon, P.J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089–1091 (1998).

    Article  CAS  Google Scholar 

  15. Savitsky, K. et al. A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  Google Scholar 

  16. Li, A. & Swift, M. Mutations of the ataxia-telangiectasia locus and clinical phenotypes of ataxia-telangiectasia patients. Am. J. Med. Genet. 92, 170–177 (2000).

    Article  CAS  Google Scholar 

  17. Vorechovsky, I. et al. ATM mutations in cancer families. Cancer Res. 56, 4130–4133 (1996).

    CAS  PubMed  Google Scholar 

  18. Chen, P.C., Lavin, M.F., Kidson, C. & Moss, D. Identification of ataxia-telangiectasia heterozygotes, a cancer prone population. Nature 274, 484–486 (1978).

    Article  CAS  Google Scholar 

  19. Paterson, M.C., MacFarlane, S.J., Gentner, N. & Smith, B.P. Cellular hypersensitivity to chronic γ-radiation in cultured fibroblasts from ataxia-telangiectasia heterozygotes. In Ataxia-telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood (eds Gatti, R.A. & Swift, M.) 73–87 (Alan R. Liss, New York, 1985).

    Google Scholar 

  20. Zhang, N. et al. Isolation of full-length ATM cDNA and correction of the ataxia-telangiectasia cellular phenotype. Proc. Natl Acad. Sci. USA 94, 8021–8026 (1997).

    Article  CAS  Google Scholar 

  21. Chenevix-Trench, G. et al. Dominant negative ATM mutations in breast cancer families. J. Natl Cancer Inst. 94, 205–215 (2002).

    Article  Google Scholar 

  22. Larson, G. et al. An allelic variant at the ATM locus is implicated in breast cancer susceptibility. Genetic Testing 1, 165–170 (1998).

    Article  CAS  Google Scholar 

  23. Becker-Catania, S.G. et al. Ataxia-telangiectasia: phenotype/genotype studies of ATM protein expression, mutations and radiosensitivity. Mol. Gen. Metab. 70, 122–133 (2000).

    Article  CAS  Google Scholar 

  24. Gueven, N. et al. Epidermal growth factor sensitizes cells to ionizing radiation by down-regulating protein mutated in ataxia-telangiectasia. J. Biol. Chem. 276, 8884–8891 (2001).

    Article  CAS  Google Scholar 

  25. Gilad, S. et al. Predominance of null mutations in ataxia-telangiectasia. Hum. Mol. Genet. 5, 433–439 (1996).

    Article  CAS  Google Scholar 

  26. Stewart, G.S. et al. Residual ATM protein function in cells from ataxia telangiectasia patients 5762ins137 and 7271T→G mutations, showing a less severe phenotype. J. Biol. Chem. 276, 30133–30141 (2001).

    Article  CAS  Google Scholar 

  27. Lim, D.S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  Google Scholar 

  28. Scott S.P. et al. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc. Natl Acad. Sci. USA 99, 925–930 (2002).

    Article  CAS  Google Scholar 

  29. Barlow, C., Eckhaus, M.A., Schaffer, A.A. & Wynshaw-Boris, A. Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice. Nature Genet. 21, 359–360 (1999).

    Article  CAS  Google Scholar 

  30. Canman, C.E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Australian National Health and Medical Research Council, the Ataxia-Telangiectasia Research Foundation (Los Angeles) and the Ataxia-Telangiectasia Children's Project (Florida) for support. Thanks to A. Farrell for technical support and T. Laing for typing the manuscript. P.J.M. acknowledges support from the NIH and the American Lebanese and Syrian Associated Charities (ALSAC) of St. Jude Children's Research Hospital. M.S. acknowledges support from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Lavin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spring, K., Ahangari, F., Scott, S. et al. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat Genet 32, 185–190 (2002). https://doi.org/10.1038/ng958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing