Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes

Abstract

Quantitative differences in gene expression are thought to contribute to phenotypic differences between individuals. We generated genome-wide transcriptional profiles of lymphocyte samples from 1,240 participants in the San Antonio Family Heart Study. The expression levels of 85% of the 19,648 detected autosomal transcripts were significantly heritable. Linkage analysis uncovered >1,000 cis-regulated transcripts at a false discovery rate of 5% and showed that the expression quantitative trait loci with the most significant linkage evidence are often located at the structural locus of a given transcript. To highlight the usefulness of this much-enlarged map of cis-regulated transcripts for the discovery of genes that influence complex traits in humans, as an example we selected high-density lipoprotein cholesterol concentration as a phenotype of clinical importance, and identified the cis-regulated vanin 1 (VNN1) gene as harboring sequence variants that influence high-density lipoprotein cholesterol concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Identification of VNN1 (vanin 1) as an HDL-C (high-density lipoprotein cholesterol) candidate gene and association analysis of VNN1 promoter variants and VNN1 transcript abundance.
Figure 3: EMSA (electrophoretic mobility shift assay) analysis of the VNN1 (vanin 1) −137 polymorphism and surrounding sequences.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jansen, R.C. & Nap, J.P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35, 57–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Storey, J.D., Akey, J.M. & Kruglyak, L. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol. 3, e267 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brem, R.B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. USA 102, 1572–1577 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kirst, M. et al. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 135, 2368–2378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wayne, M.L. & McIntyre, L.M. Combining mapping and arraying: An approach to candidate gene identification. Proc. Natl. Acad. Sci. USA 99, 14903–14906 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 37, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Dausset, J. et al. Centre d'etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 6, 575–577 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Monks, S.A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheung, V.G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stranger, B.E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deutsch, S. et al. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. Hum. Mol. Genet. 14, 3741–3749 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Pastinen, T., Ge, B. & Hudson, T.J. Influence of human genome polymorphism on gene expression. Hum. Mol. Genet. 15, R9–R16 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. de Koning, D.J. & Haley, C.S. Genetical genomics in humans and model organisms. Trends Genet. 21, 377–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Pant, P.V. et al. Analysis of allelic differential expression in human white blood cells. Genome Res. 16, 331–339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitney, A.R. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl. Acad. Sci. USA 100, 1896–1901 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Storey, J.D. et al. Gene-expression variation within and among human populations. Am. J. Hum. Genet. 80, 502–509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell, B.D. et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation 94, 2159–2170 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Pruitt, K.D., Tatusova, T. & Maglott, D.R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and poerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  27. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat. Genet. 29, 389–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Heath, S.C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am. J. Hum. Genet. 61, 748–760 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Göring, H.H., Terwilliger, J.D. & Blangero, J. Large upward bias in estimation of locus-specific effects from genomewide scans. Am. J. Hum. Genet. 69, 1357–1369 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Williams, J.T. & Blangero, J. Power of variance component linkage analysis to detect quantitative trait loci. Ann. Hum. Genet. 63, 545–563 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Young, C.E., Karas, R.H. & Kuvin, J.T. High-density lipoprotein cholesterol and coronary heart disease. Cardiol. Rev. 12, 107–119 (2004).

    Article  PubMed  Google Scholar 

  34. Yamazaki, K., Kuromitsu, J. & Tanaka, I. Microarray analysis of gene expression changes in mouse liver induced by peroxisome proliferator- activated receptor alpha agonists. Biochem. Biophys. Res. Commun. 290, 1114–1122 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Blangero, J. et al. Quantitative trait nucleotide analysis using Bayesian model selection. Hum. Biol. 77, 541–559 (2005).

    Article  PubMed  Google Scholar 

  36. Kent, J.W. Jr., Dyer, T.D., Göring, H.H.H. & Blangero, J. Type I error rates in association versus joint linkage/association tests in related individuals. Genet. Epidemiol. 31, 173–177 (2007).

    Article  PubMed  Google Scholar 

  37. Chekmenev, D.S., Haid, C. & Kel, A.E. P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res. 33, W432–W437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wingender, E. et al. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316–319 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kadonaga, J.T., Carner, K.R., Masiarz, F.R. & Tjian, R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079–1090 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Turner, J. & Crossley, M. Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci. 24, 236–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Kaczynski, J., Cook, T. & Urrutia, R. Sp1- and Kruppel-like transcription factors. Genome Biol. 4, 206 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perez-Enciso, M. In silico study of transcriptome genetic variation in outbred populations. Genetics 166, 547–554 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schadt, E.E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McPeek, M.S. & Sun, L. Statistical tests for detection of misspecified relationships by use of genome-screen data. Am. J. Hum. Genet. 66, 1076–1094 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sobel, E. & Lange, K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am. J. Hum. Genet. 58, 1323–1337 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sobel, E., Papp, J.C. & Lange, K. Detection and integration of genotyping errors in statistical genetics. Am. J. Hum. Genet. 70, 496–508 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boehnke, M. Allele frequency estimation from data on relatives. Am. J. Hum. Genet. 48, 22–25 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Boerwinkle, E., Chakraborty, R. & Sing, C.F. The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann. Hum. Genet. 50, 181–194 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Warnick, G.R., Benderson, J. & Albers, J.J. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin. Chem. 28, 1379–1388 (1982).

    CAS  PubMed  Google Scholar 

  50. Li, Y.C., Ross, J., Scheppler, J.A. & Franza, B.R. Jr. An in vitro transcription analysis of early responses of the human immunodeficiency virus type 1 long terminal repeat to different transcriptional activators. Mol. Cell. Biol. 11, 1883–1893 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the participants in the San Antonio Family Heart Study. Data collection was supported by a grant from the US National Institute for Heart, Lungs and Blood (HL045222). A donation from the Azar and Shepperd families paid for the transcriptional profiling. Additional funds for transcriptional profiling, sequencing, genotyping and statistical analysis were provided by ChemGenex Pharmaceuticals. The SOLAR statistical genetics computer package is supported by a grant from the US National Institute of Mental Health (MH059490). The supercomputing facilities used for this work at the AT&T Genetics Computing Center were supported in part by a gift from the SBC Foundation. The laboratory work was carried out in facilities that were constructed with support from the US National Center for Research Resources (RR013556).

Author information

Authors and Affiliations

Authors

Contributions

J.B., E.K.M. and G.R.C. initiated the study. H.H.H.G. and J.B. performed or supervised all aspects of the statistical analysis and were aided by T.D.D. and J.C. E.K.M., J.E.C. and L.J.A. were responsible for all molecular analyses, including transcriptional profiles, resequencing, SNP typing and functional analysis, with aid from M.P.J. J.B., J.W.M., M.C.M., A.G.C., and L.A. were responsible for the Mexican American family samples. S.A.C. and J.B. were responsible for the 10-cM STR typing. D.L.R. was responsible for the HDL-C measurement. J.B.M.J. and J.C. performed bioinformatic analyses. A.H.K. and G.R.C. provided additional biological interpretation.

Corresponding author

Correspondence to Harald H H Göring.

Ethics declarations

Competing interests

Funds for resequencing, genotyping, transcriptional profiling, and statistical analyses were provided in part by ChemGenex Pharmaceuticals. G.R.C. has personal financial interests in ChemGenex. G.R.C. is also the Chief Executive Officer and Managing Director of ChemGenex. J.B. is a member of the Scientific Advisory Board of ChemGenex. J.B. also serves as Senior Director of Human Genomics.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3,5 and Supplementary Figure 1 (PDF 290 kb)

Supplementary Table 4

Heritability estimates, cis lod scores and maximum trans lod scores for all transcripts (XLS 1684 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göring, H., Curran, J., Johnson, M. et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39, 1208–1216 (2007). https://doi.org/10.1038/ng2119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing