Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mutational and selective effects on copy-number variants in the human genome

Abstract

Comprehensive descriptions of large insertion/deletion or segmental duplication polymorphisms (SDs) in the human genome have recently been generated. These annotations, known collectively as structural or copy-number variants (CNVs), include thousands of discrete genomic regions and span hundreds of millions of nucleotides. Here we review the genomic distribution of CNVs, which is strongly correlated with gene, repeat and segmental duplication content. We explore the evolutionary mechanisms giving rise to this nonrandom distribution, considering the available data on both human polymorphisms and the fixed changes that differentiate humans from other species. It is likely that mutational biases, selective effects and interactions between these forces all contribute substantially to the spectrum of human copy-number variation. Although defining these variants with nucleotide-level precision remains a largely unmet but critical challenge, our understanding of their potential medical impact and evolutionary importance is rapidly emerging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Copy-number variation along human chromosome 16.
Figure 2: Relationships among copy-number variants, segmental duplications, and genes.
Figure 3: Functional annotation of copy-number variation gene content.
Figure 4: Variation in the X-chromosome opsin locus sequence, structure and resulting phenotype.

Similar content being viewed by others

References

  1. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  2. Bhangale, T.R., Rieder, M.J., Livingston, R.J. & Nickerson, D.A. Comprehensive identification and characterization of diallelic insertion-deletion polymorphisms in 330 human candidate genes. Hum. Mol. Genet. 14, 59–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Bhangale, T.R., Stephens, M. & Nickerson, D.A. Automating resequencing-based detection of insertion-deletion polymorphisms. Nat. Genet. 38, 1457–1462 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Mills, R.E. et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCarroll, S.A. et al. Common deletion polymorphisms in the human genome. Nat. Genet. 38, 86–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, K.K. et al. A comprehensive analysis of common copy-number variations in the human genome. Am. J. Hum. Genet. 80, 91–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooper, G.M. et al. Characterization of evolutionary rates and constraints in three mammalian genomes. Genome Res. 14, 539–548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feuk, L. et al. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genet [online] 1, e56 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  16. Newman, T.L. et al. A genome-wide survey of structural variation between human and chimpanzee. Genome Res. 15, 1344–1356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. She, X. et al. The structure and evolution of centromeric transition regions within the human genome. Nature 430, 857–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Trask, B.J. et al. Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum. Mol. Genet. 7, 13–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Eichler, E.E. et al. Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum. Mol. Genet. 5, 899–912 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Bailey, J.A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. She, X. et al. A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Res. 16, 576–583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, L., Lu, H.H., Chung, W.Y., Yang, J. & Li, W.H. Patterns of segmental duplication in the human genome. Mol. Biol. Evol. 22, 135–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Beiβbarth, T. & Speed, T.P. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20, 1464–1465 (2004).

    Article  Google Scholar 

  25. Thomas, P.D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, D.Q., Webber, C. & Ponting, C.P. Bias of selection on human copy-number variants. PLoS Genet [online] 2, e20 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharp, A.J., Cheng, Z. & Eichler, E.E. Structural variation of the human genome. Annu. Rev. Genomics Hum. Genet. 7, 407–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Noonan, J.P., Grimwood, J., Schmutz, J., Dickson, M. & Myers, R.M. Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res. 14, 354–366 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, F.H., Yarov-Yarovoy, V., Gutman, G.A. & Catterall, W.A. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57, 387–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ohno, S., Wolf, U. & Atkin, N.B. Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187 (1968).

    Article  CAS  PubMed  Google Scholar 

  33. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Noonan, J.P. et al. Extensive linkage disequilibrium, a common 16.7-kilobase deletion, and evidence of balancing selection in the human protocadherin α cluster. Am. J. Hum. Genet. 72, 621–635 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nobrega, M.A., Zhu, Y., Plajzer-Frick, I., Afzal, V. & Rubin, E.M. Megabase deletions of gene deserts result in viable mice. Nature 431, 988–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Small, K.S., Brudno, M., Hill, M.M. & Sidow, A. Extreme genomic variation in a natural population. Proc. Natl. Acad. Sci. USA 104, 5698–5703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  39. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  40. Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

  41. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bourque, G., Pevzner, P.A. & Tesler, G. Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Res. 14, 507–516 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murphy, W.J., Bourque, G., Tesler, G., Pevzner, P. & O'Brien, S.J. Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps. Hum. Genomics 1, 30–40 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murphy, W.J. et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Peng, Q., Pevzner, P.A. & Tesler, G. The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput. Biol. [online] 2, e14 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pevzner, P. & Tesler, G. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100, 7672–7677 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goidts, V. et al. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Genome Res. 15, 1232–1242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Armengol, L., Pujana, M.A., Cheung, J., Scherer, S.W. & Estivill, X. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum. Mol. Genet. 12, 2201–2208 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Bailey, J.A., Baertsch, R., Kent, W.J., Haussler, D. & Eichler, E.E. Hotspots of mammalian chromosomal evolution. Genome Biol. [online] 5, R23 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bailey, J.A. et al. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 70, 83–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Paulding, C.A., Ruvolo, M. & Haber, D.A. The Tre2 (USP6) oncogene is a hominoid-specific gene. Proc. Natl. Acad. Sci. USA 100, 2507–2511 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Courseaux, A. & Nahon, J.L. Birth of two chimeric genes in the Hominidae lineage. Science 291, 1293–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Inoue, K. & Lupski, J.R. Molecular mechanisms for genomic disorders. Annu. Rev. Genomics Hum. Genet. 3, 199–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Deeb, S.S. Genetics of variation in human color vision and the retinal cone mosaic. Curr. Opin. Genet. Dev. 16, 301–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Aitman, T.J. et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439, 851–855 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Singleton, A.B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Fellermann, K. et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet. 79, 439–448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Le Marechal, C. et al. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat. Genet. 38, 1372–1374 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. The Autism Genome Project Consortium. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 39, 319–328 (2007).

  61. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Locke, D.P. et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am. J. Hum. Genet. 79, 275–290 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Derti, A., Roth, F.P., Church, G.M. & Wu, C.T. Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nat. Genet. 38, 1216–1220 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Nobrega, M.A., Ovcharenko, I., Afzal, V. & Rubin, E.M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Johnson, M.E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Ciccarelli, F.D. et al. Complex genomic rearrangements lead to novel primate gene function. Genome Res. 15, 343–351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Popesco, M.C. et al. Human lineage–specific amplification, selection, and neuronal expression of DUF1220 domains. Science 313, 1304–1307 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. de Vries, B.B. et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77, 606–616 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharp, A.J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 38, 1038–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Shaw-Smith, C. et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat. Genet. 38, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Koolen, D.A. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat. Genet. 38, 999–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from National Human Genome Research Institute Interdisciplinary Training in Genomic Sciences grant T32 HG00035 and National Heart, Lung, and Blood Institute Program for Genomic Applications grant HL066682. E.E.E is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Human genomic intervals annotated to be part of a copy-number variant (XLS 295 kb)

Supplementary Table 2

Densities of copy-number variants and other genomic features in 1-Mb non-overlapping windows (XLS 487 kb)

Supplementary Note (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, G., Nickerson, D. & Eichler, E. Mutational and selective effects on copy-number variants in the human genome. Nat Genet 39 (Suppl 7), S22–S29 (2007). https://doi.org/10.1038/ng2054

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing