Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible

Abstract

Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCε1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif–containing GTPase-activating protein 1 as a new interaction partner of PLCε1. Two siblings with a missense mutation in an exon encoding the PLCε1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positional cloning of PLCE1 as mutated in NPHS type 3.
Figure 2: Glomerular expression of PLCε1 and identification of interaction partner IQGAP1.
Figure 3: PLCε1 localizes to glomerular podocytes in adult rat.
Figure 4: Colocalization studies of PLCε1 with podocalyxin, IQGAP1 and WT1 in the developing glomerulus of a 2-d-old rat kidney.
Figure 5: Functional analysis of plce1 in the zebrafish pronephros.

Similar content being viewed by others

References

  1. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  Google Scholar 

  2. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  Google Scholar 

  3. Hasselbacher, K. et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 70, 1008–1012 (2006).

    Article  CAS  Google Scholar 

  4. Mucha, B. et al. Mutations in the Wilms' tumor 1 gene cause isolated steroid resistant nephrotic syndrome and occur in exons 8 and 9. Pediatr. Res. 59, 325–331 (2006).

    Article  CAS  Google Scholar 

  5. Kaplan, J.M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  Google Scholar 

  6. Winn, M.P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  Google Scholar 

  7. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  Google Scholar 

  8. Wharram, B.L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  Google Scholar 

  9. Kriz, W. Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc. Res. Tech. 57, 189–195 (2002).

    Article  Google Scholar 

  10. Somlo, S. & Mundel, P. Getting a foothold in nephrotic syndrome. Nat. Genet. 24, 333–335 (2000).

    Article  CAS  Google Scholar 

  11. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  Google Scholar 

  12. Antignac, C. Molecular basis of steroid-resistant nephrotic syndrome. Nefrologia 25 (Suppl.), 25–28 (2005).

    PubMed  Google Scholar 

  13. Ransom, R.F. Podocyte proteomics. Contrib. Nephrol. 141, 189–211 (2004).

    Article  CAS  Google Scholar 

  14. Wing, M.R., Bourdon, D.M. & Harden, T.K. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol. Interv. 3, 273–280 (2003).

    Article  CAS  Google Scholar 

  15. Holmberg, C., Tryggvason, K., Kestila, M. & Jalanko, H. Congenital nephrotic syndrome. in Pediatric Nephrology (eds. Avner, E., Harmon, W.E. & Niaudet, P.) (Lippincott Williams & Wilkins, Philadelphia, 2004).

    Google Scholar 

  16. Ruf, R.G. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15, 722–732 (2004).

    Article  Google Scholar 

  17. Habib, R. et al. The nephropathy associated with male pseudohermaphroditism and Wilms' tumor (Drash syndrome): a distinctive glomerular lesion–report of 10 cases. Clin. Nephrol. 24, 269–278 (1985).

    CAS  PubMed  Google Scholar 

  18. Habib, R., Gubler, M.C., Antignac, C. & Gagnadoux, M.F. Diffuse mesangial sclerosis: a congenital glomerulopathy with nephrotic syndrome. Adv. Nephrol. Necker Hosp. 22, 43–57 (1993).

    CAS  PubMed  Google Scholar 

  19. Habib, R. Nephrotic syndrome in the 1st year of life. Pediatr. Nephrol. 7, 347–353 (1993).

    Article  CAS  Google Scholar 

  20. Kelley, G.G., Reks, S.E., Ondrako, J.M. & Smrcka, A.V. Phospholipase C(epsilon): a novel Ras effector. EMBO J. 20, 743–754 (2001).

    Article  CAS  Google Scholar 

  21. Sorli, S.C., Bunney, T.D., Sugden, P.H., Paterson, H.F. & Katan, M. Signaling properties and expression in normal and tumor tissues of two phospholipase C epsilon splice variants. Oncogene 24, 90–100 (2005).

    Article  CAS  Google Scholar 

  22. Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med. 354, 1387–1401 (2006).

    Article  CAS  Google Scholar 

  23. Zenker, M. et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  Google Scholar 

  24. Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

    Article  CAS  Google Scholar 

  25. Yang, Y. et al. WT1 and PAX-2 podocyte expression in Denys-Drash syndrome and isolated diffuse mesangial sclerosis. Am. J. Pathol. 154, 181–192 (1999).

    Article  CAS  Google Scholar 

  26. Schnabel, E., Dekan, G., Miettinen, A. & Farquhar, M.G. Biogenesis of podocalyxin–the major glomerular sialoglycoprotein–in the newborn rat kidney. Eur. J. Cell Biol. 48, 313–326 (1989).

    CAS  PubMed  Google Scholar 

  27. Lehtonen, S. et al. Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc. Natl. Acad. Sci. USA 102, 9814–9819 (2005).

    Article  CAS  Google Scholar 

  28. Liu, X.L. et al. Characterization of the interactions of the nephrin intracellular domain. FEBS J. 272, 228–243 (2005).

    Article  CAS  Google Scholar 

  29. Brown, M.D. & Sacks, D.B. IQGAP1 in cellular signaling: bridging the GAP. Trends Cell Biol. 16, 242–249 (2006).

    Article  CAS  Google Scholar 

  30. Kramer-Zucker, A.G., Wiessner, S., Jensen, A.M. & Drummond, I.A. Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev. Biol. 285, 316–329 (2005).

    Article  CAS  Google Scholar 

  31. Wang, H. et al. Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ. Res. 97, 1305–1313 (2005).

    Article  CAS  Google Scholar 

  32. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Short versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Lancet 1, 380–383 (1988).

  33. ISKDC. Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity: a report of the International Study of Kidney Disease in Children. Kidney Int. 20, 765–771 (1981).

  34. Strauch, K. Parametric linkage analysis with automatic optimization of the disease model parameters. Am. J. Hum. Genet. 73, A2624 (2003).

    Google Scholar 

  35. Kestila, M., Mannikko, M., Holmberg, C., Tryggvason, K. & Peltonen, L. Congenital nephrotic syndrome of the Finnish type is not associated with the Pax-2 gene despite the promising transgenic animal model. Genomics 19, 570–572 (1994).

    Article  CAS  Google Scholar 

  36. Wiggins, J.E. et al. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol. 16, 2953–2966 (2005).

    Article  Google Scholar 

  37. Verma, R. et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J. Clin. Invest. 116, 1346–1359 (2006).

    Article  CAS  Google Scholar 

  38. Kim, Y.H. et al. Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int. 60, 957–968 (2001).

    Article  CAS  Google Scholar 

  39. Kershaw, D.B. et al. Molecular cloning, expression, and characterization of podocalyxin-like protein 1 from rabbit as a transmembrane protein of glomerular podocytes and vascular endothelium. J. Biol. Chem. 270, 29439–29446 (1995).

    Article  CAS  Google Scholar 

  40. Kerjaschki, D., Sharkey, D.J. & Farquhar, M.G. Identification and characterization of podocalyxin–the major sialoprotein of the renal glomerular epithelial cell. J. Cell. Biol. 98, 1591–1596 (1984).

    Article  CAS  Google Scholar 

  41. Westerfield, M. (ed.). The Zebrafish Book (Univ. of Oregon Press, Eugene, Oregon, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families for participation. We acknowledge R.H. Lyons for large-scale sequencing. We thank S.J. Allen and M. Petry for technical assistance and M. McKee for electron microscopy in zebrafish. GFP-tagged IQGAP1 constructs were provided by G. Bloom (University of Virginia). This research was supported by grants from the US National Institutes of Health to F.H., R.C.W. and L.B.H. (P50-DK039255), to R.C.W. (DK46073), to A.V.S. (R01-GM053536) to I.D. (R01-DK53093) and to G.G.K. (R01-DK56294) and by a grant from the KMD Foundation and the Thrasher Research Fund to F.H.; F.H. is the Frederick G.L. Huetwell Professor and a Doris Duke Distinguished Clinical Scientist. The work was further supported by the German Federal Ministry of Science and Education through the National Genome Research Network (C.B., H.C.H., G.N., P.N. and D.S.), by a EuReGene grant to D.M. (E.U., FP6005085) and by grants from the German Research Foundation (A.K., A.D. and T.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Protein domains of human SRN3 (AB040949) as predicted by PFAM. (PDF 33 kb)

Supplementary Fig. 2

Characterization of two different anti-PLCε1 polyclonal antibodies. (PDF 74 kb)

Supplementary Fig. 3

PLCE1 mutation leads to renal histology of diffuse mesangial sclerosis (DMS) and is associated in with interrupted glomerular development. (PDF 691 kb)

Supplementary Fig. 4

CLUSTAL_W amino acid multiple sequence alignment of PLCε1 throughout evolution. (PDF 80 kb)

Supplementary Table 1

Exon-flanking and morpholino oligonucleotide primers used in human and zebrafish PLCE1 studies. (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkes, B., Wiggins, R., Gbadegesin, R. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38, 1397–1405 (2006). https://doi.org/10.1038/ng1918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing