Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide transcription analyses in rice using tiling microarrays

Abstract

Sequencing and computational annotation revealed several features, including high gene numbers1,2,3,4,5,6, unusual composition of the predicted genes1,7 and a large number of genes lacking homology to known genes8,9, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species. We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions that share similar compositional properties with the annotated exons and have significant homology to other plant proteins. Elucidating and mapping of all transcribed regions revealed an association between global transcription and cytological chromosome features, and an overall similarity of transcriptional activity between duplicated segments of the genome. Collectively, our results provide the first whole-genome transcription map useful for further understanding the rice genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tiling microarray analysis of indica rice gene models and intergenic regions.
Figure 2: Tiling array detection of annotated indica gene models.
Figure 3: Identification and characterization of TARs.
Figure 4: Tiling microarray analysis of chromosome-wide transcriptional activities.
Figure 5: Transcription analysis of duplicated segments in the indica genome.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).

    Article  CAS  Google Scholar 

  2. Goff, S.A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296, 92–100 (2002).

    Article  CAS  Google Scholar 

  3. Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (2005).

    Article  Google Scholar 

  4. Sasaki, T. et al. The genome sequence and structure of rice chromosome 1. Nature 420, 312–316 (2002).

    Article  CAS  Google Scholar 

  5. Feng, Q. et al. Sequence and analysis of rice chromosome 4. Nature 420, 316–320 (2002).

    Article  CAS  Google Scholar 

  6. Rice Chromosome 10 Sequencing Consortium. In-depth view of structure, activity, and evolution of rice Chromosome 10. Science 300, 1566–1569 (2003).

  7. Wong, G.K. et al. Compositional gradients in Gramineae genes. Genome Res. 12, 851–856 (2002).

    Article  CAS  Google Scholar 

  8. Bennetzen, J.L., Coleman, C., Liu, R., Ma, J. & Ramakrishna, W. Consistent over-estimation of gene number in complex plant genomes. Curr. Opin. Plant Biol. 7, 732–736 (2004).

    Article  CAS  Google Scholar 

  9. Jabbari, K., Cruveiller, S., Clay, O., Le Saux, J. & Bernardi, G. The new genes of rice: a closer look. Trends Plant Sci. 9, 281–285 (2004).

    Article  CAS  Google Scholar 

  10. Nuwaysir, E.F. et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12, 1749–1755 (2002).

    Article  CAS  Google Scholar 

  11. Stolc, V. et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306, 655–660 (2004).

    Article  CAS  Google Scholar 

  12. Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004).

    Article  CAS  Google Scholar 

  13. Li, L. et al. Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture. Genome Biol. 6, R52 (2005).

    Article  Google Scholar 

  14. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003).

    Article  CAS  Google Scholar 

  15. Kikuchi, S. et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 300, 1566–1569 (2003).

    Article  Google Scholar 

  16. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant. Arabidopsis thaliana. Nature 408, 796–815 (2000).

  17. Bedell, J.A. et al. Sorghum genome sequencing by methylation filtration. PLoS Biol. 3, e1 (2005).

    Article  Google Scholar 

  18. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    Article  CAS  Google Scholar 

  19. Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).

    Article  CAS  Google Scholar 

  20. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  Google Scholar 

  21. Rinn, J.L. et al. The transcriptional activity of human Chromosome 22. Genes Dev. 17, 529–540 (2003).

    Article  CAS  Google Scholar 

  22. Messing, J. et al. Sequence composition and genome organization of maize. Proc. Natl. Acad. Sci. USA 101, 14349–14354 (2004).

    Article  CAS  Google Scholar 

  23. Temnykh, S. et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441–1452 (2001).

    Article  CAS  Google Scholar 

  24. Li, C. et al. Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of the Asian cultivated rice. Theor. Appl. Genet. 108, 392–400 (2004).

    Article  CAS  Google Scholar 

  25. Nagaki, K. et al. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 36, 138–145 (2004).

    Article  CAS  Google Scholar 

  26. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  27. She, X. et al. Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431, 927–930 (2004).

    Article  CAS  Google Scholar 

  28. Jiao, Y. et al. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosomal level regulation of transcription. Plant Cell 17, 1641–1657 (2005).

    Article  CAS  Google Scholar 

  29. Cheng, Z. et al. Toward a cytological characterization of the rice genome. Genome Res. 11, 2133–2141 (2001).

    Article  CAS  Google Scholar 

  30. Kent, W.J. BLAT-the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The collaborative indica rice tiling microarray project in China was supported by the 863 rice functional genomics program from the Ministry of Science and Technology of China and by the National Institute of Biological Sciences at Beijing. The rice tiling microarray project at Yale University was supported by a grant from the US National Science Foundation Plant Genome Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Wang Deng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Hybridization rate (HR) distribution in exons and introns of full-length cDNA supported (CG) gene models. (PDF 708 kb)

Supplementary Fig. 2

Transcription analysis of the 12 indica chromosomes. (PDF 353 kb)

Supplementary Fig. 3

Structural properties of different indica gene models. (PDF 245 kb)

Supplementary Fig. 4

Compositional property of the six groups if indica gene models. (PDF 466 kb)

Supplementary Fig. 5

Distribution of signal probes along the 12 indica chromosomes. (PDF 975 kb)

Supplementary Fig. 6

Cytological image of the 12 indica chromosomes. (PDF 1043 kb)

Supplementary Table 1

Transcriptional analysis of duplicated segments in the indica genome. (PDF 45 kb)

Supplementary Note (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wang, X., Stolc, V. et al. Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38, 124–129 (2006). https://doi.org/10.1038/ng1704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing