Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes

Abstract

The developmental regulation of vertebrate Hox gene transcription relies on the interplay between local and long-range controls. To study this complex genomic organization, we designed a strategy combining meiotic and targeted recombinations to induce large chromosomal rearrangements in vivo without manipulating embryonic stem cells. With this simple approach (called STRING), we engineered a large 7-cM inversion, which split the Hoxd cluster into two independent pieces. Expression analyses showed a partition of global enhancers, allowing for their precise topographic allocation on either side of the cluster. Such a functional organization probably contributed to keeping these genes clustered in the course of vertebrate evolution. This approach can be used to study the relationship between genome architecture and gene expression, such as the effects of genome rearrangements in human diseases or during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The STRING approach.
Figure 2: Efficiency of targeted inversion around the Hoxd locus.
Figure 3: A 7-cM large inversion between Itga6 and Hoxd.
Figure 4: Targeted split of the Hoxd gene cluster.
Figure 5: Remote large-scale enhancers flanking the Hoxd cluster define overlapping regulatory landscapes.

Similar content being viewed by others

References

  1. Hurst, L.D., Pal, C. & Lercher, M.J. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–310 (2004).

    Article  CAS  Google Scholar 

  2. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  Google Scholar 

  3. Lettice, L.A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735 (2003).

    Article  CAS  Google Scholar 

  4. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  Google Scholar 

  5. Zuniga, A. et al. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev. 18, 1553–1564 (2004).

    Article  CAS  Google Scholar 

  6. Spitz, F. et al. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev. 15, 2209–2214 (2001).

    Article  CAS  Google Scholar 

  7. Duboule, D. Vertebrate Hox gene regulation: clustering and/or colinearity? Curr. Opin. Genet. Dev. 8, 514–518 (1998).

    Article  CAS  Google Scholar 

  8. Akam, M. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57, 347–349 (1989).

    Article  CAS  Google Scholar 

  9. Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780–790 (2001).

    Article  CAS  Google Scholar 

  10. Zakany, J., Gerard, M., Favier, B. & Duboule, D. Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO J. 16, 4393–4402 (1997).

    Article  CAS  Google Scholar 

  11. Gimond, C. et al. Cre-loxP-mediated inactivation of the alpha6A integrin splice variant in vivo: evidence for a specific functional role of alpha6A in lymphocyte migration but not in heart development. J. Cell Biol. 143, 253–266 (1998).

    Article  CAS  Google Scholar 

  12. Wittig, B.M., Johansson, B., Zoller, M., Schwarzler, C. & Gunthert, U. Abrogation of experimental colitis correlates with increased apoptosis in mice deficient for CD44 variant exon 7 (CD44v7). J. Exp. Med. 191, 2053–2064 (2000).

    Article  CAS  Google Scholar 

  13. Kmita, M., Fraudeau, N., Herault, Y. & Duboule, D. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 420, 145–150 (2002).

    Article  CAS  Google Scholar 

  14. Kmita, M., Kondo, T. & Duboule, D. Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nat. Genet. 26, 451–454 (2000).

    Article  CAS  Google Scholar 

  15. Davis, A.P., Witte, D.P., Hsieh-Li, H.M., Potter, S.S. & Capecchi, M.R. Absence of radius and ulna in mice lacking Hoxa-11 and Hoxd-11. Nature 375, 791–795 (1995).

    Article  CAS  Google Scholar 

  16. Sordino, P., van der Hoeven, F. & Duboule, D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375, 678–681 (1995).

    Article  CAS  Google Scholar 

  17. Duboule, D. & Dolle, P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 8, 1497–1505 (1989).

    Article  CAS  Google Scholar 

  18. Graham, A., Papalopulu, N. & Krumlauf, R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57, 367–378 (1989).

    Article  CAS  Google Scholar 

  19. Gaunt, S.J., Sharpe, P.T. & Duboule, D. Spatially restricted domains of homeo-gene transcripts in mouse embryos: relation to a segmented body plan. Development 104 Suppl, 169–179 (1988).

    Google Scholar 

  20. Gould, A., Morrison, A., Sproat, G., White, R.A. & Krumlauf, R. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 11, 900–913 (1997).

    Article  CAS  Google Scholar 

  21. Zhang, F. et al. Elements both 5′ and 3′ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech. Dev. 67, 49–58 (1997).

    Article  CAS  Google Scholar 

  22. Vogels, R., Charite, J., de Graaff, W. & Deschamps, J. Proximal cis-acting elements cooperate to set Hoxb-7 (Hox-2.3) expression boundaries in transgenic mice. Development 118, 71–82 (1993).

    CAS  PubMed  Google Scholar 

  23. Zheng, B., Sage, M., Sheppeard, E.A., Jurecic, V. & Bradley, A. Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol. Cell. Biol. 20, 648–655 (2000).

    Article  CAS  Google Scholar 

  24. Puech, A. et al. Normal cardiovascular development in mice deficient for 16 genes in 550 kb of the velocardiofacial/ DiGeorge syndrome region. Proc. Natl. Acad. Sci. USA 97, 10090–10095 (2000).

    Article  CAS  Google Scholar 

  25. Kondo, T., Zakany, J. & Duboule, D. Control of colinearity in AbdB genes of the mouse HoxD complex. Mol. Cell 1, 289–300 (1998).

    Article  CAS  Google Scholar 

  26. Herault, Y., Rassoulzadegan, M., Cuzin, F. & Duboule, D. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nat. Genet. 20, 381–384 (1998).

    Article  CAS  Google Scholar 

  27. Monge, I., Kondo, T. & Duboule, D. An enhancer-titration effect induces digit-specific regulatory alleles of the HoxD cluster. Dev. Biol. 256, 212–220 (2003).

    Article  CAS  Google Scholar 

  28. Kulnane, L.S., Lehman, E.J.H., Hock, B.J., Tsuchiya, K.D. & Lamb, B.T. Rapid and efficient detection of transgene homozygosity by FISH of mouse fibroblasts. Mamm. Genome 13, 223–226 (2002).

    Article  CAS  Google Scholar 

  29. Spitz, F. et al. A t(2;8) balanced translocation with breakpoints near the human HOXD complex causes mesomelic dysplasia and vertebral defects. Genomics 79, 493–498 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Sonnenberg, U. Gunthert, J. Zakany and J. Cobb for gifts of mice and advice for genotyping; G. Zacchetti for in situ probes; F. Chabaud for help with mouse fibroblasts; C. Hinard for the chromosome FISH analysis; and J. Zakany for comments on this manuscript. This work was supported by funds from the canton de Genève, the Claraz and Louis-Jeantet foundations, the Swiss National Research Fund, the National Center for Competence in Research 'Frontiers in Genetics' and the European Union programmes 'Eumorphia' and 'Cells to Organs'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Duboule.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Sequences of primers used to genotype the different alleles. (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitz, F., Herkenne, C., Morris, M. et al. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37, 889–893 (2005). https://doi.org/10.1038/ng1597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing