Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification

A Corrigendum to this article was published on 01 April 2010

Abstract

Breakage-fusion-bridge cycles contribute to chromosome instability and generate large DNA palindromes that facilitate gene amplification in human cancers. The prevalence of large DNA palindromes in cancer is not known. Here, by using a new microarray-based approach called genome-wide analysis of palindrome formation, we show that palindromes occur frequently and are widespread in human cancers. Individual tumors seem to have a nonrandom distribution of palindromes in their genomes, and a subset of palindromic loci is associated with gene amplification. This indicates that the location of palindromes in the cancer genome can serve as a structural platform that supports subsequent gene amplification. Genome-wide analysis of palindrome formation is a new approach to identify structural chromosome aberrations associated with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Snap-back DNA and S1 digestion enriches for palindromic DNA.
Figure 2: GAPF.
Figure 3: GAPF-positive features are not randomly distributed in cancer cells.
Figure 4: Physical maps of GAPF-positive cytogenetic bands.
Figure 5: Palindromic amplification of ECM1 in Colo320DM cells.

Similar content being viewed by others

References

  1. Tlsty, T.D. Genomic instability and its role in neoplasia. Curr. Top. Microbiol. Immunol. 221, 37–46 (1997).

    CAS  PubMed  Google Scholar 

  2. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  3. Albertson, D.G., Collins, C., McCormick, F. & Gray, J.W. Chromosome aberrations in solid tumors. Nat. Genet. 34, 369–376 (2003).

    Article  CAS  Google Scholar 

  4. Tanaka, H., Tapscott, S.J., Trask, B.J. & Yao, M.C. Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 8772–8777 (2002).

    Article  CAS  Google Scholar 

  5. Yasuda, L.F. & Yao, M.C. Short inverted repeats at a free end signal large palindromic DNA formation in Tetrahymena. Cell 67, 505–516 (1991).

    Article  CAS  Google Scholar 

  6. Butler, D.K., Yasuda, L.E. & Yao, M.C. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes. Cell 87, 1115–1122 (1996).

    Article  CAS  Google Scholar 

  7. Toledo, F., Le Roscouet, D., Buttin, G. & Debatisse, M. Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J. 11, 2665–2673 (1992).

    Article  CAS  Google Scholar 

  8. Smith, K.A., Stark, M.B., Gorman, P.A. & Stark, G.R. Fusions near telomeres occur very early in the amplification of CAD genes in Syrian hamster cells. Proc. Natl. Acad. Sci. USA 89, 5427–5431 (1992).

    Article  CAS  Google Scholar 

  9. Ma, C., Martin, S., Trask, B. & Hamlin, J.L. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev. 7, 605–620 (1993).

    Article  CAS  Google Scholar 

  10. Coquelle, A., Pipiras, E., Toledo, F., Buttin, G. & Debatisse, M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89, 215–225 (1997).

    Article  CAS  Google Scholar 

  11. Ish-Horowicz, D. & Pinchin, S.M. Genomic organization of the 87A7 and 87Cl heat-induced loci of Drosophila melanogaster. J. Mol. Biol. 142, 231–245 (1980).

    Article  CAS  Google Scholar 

  12. Ford, M. & Fried, M. Large inverted duplications are associated with gene amplification. Cell 45, 425–430 (1986).

    Article  CAS  Google Scholar 

  13. Graf, L., Iwata, M. & Torok-Storb, B. Gene expression profiling of the functionally distinct human bone marrow stromal cell lines HS-5 and HS-27a. Blood 100, 1509–1511 (2002).

    Article  CAS  Google Scholar 

  14. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  Google Scholar 

  15. Bernasconi, M., Remppis, A., Fredericks, W.J., Rauscher, F.J. 3rd & Schafer, B.W. Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc. Natl. Acad. Sci. USA 93, 13164–13169 (1996).

    Article  CAS  Google Scholar 

  16. Swisshelm, K. et al. SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene 226, 285–295 (1999).

    Article  CAS  Google Scholar 

  17. Ruiz, J.C. & Wahl, G.M. Formation of an inverted duplication can be an initial step in gene amplification. Mol. Cell. Biol. 8, 4302–4313 (1988).

    Article  CAS  Google Scholar 

  18. Ciullo, M. et al. Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum. Mol. Genet. 11, 2887–2894 (2002).

    Article  CAS  Google Scholar 

  19. Shlomit, R. et al. Gains and losses of DNA sequences in childhood brain tumors analyzed by comparative genomic hybridization. Cancer Genet. Cytogenet. 121, 67–72 (2000).

    Article  CAS  Google Scholar 

  20. Michiels, E.M. et al. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J. Pediatr. Hematol. Oncol. 24, 205–210 (2002).

    Article  Google Scholar 

  21. McClintock, B. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 16, 13–47 (1951).

    Article  CAS  Google Scholar 

  22. Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. & de Lange, T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12, 1635–1644 (2002).

    Article  CAS  Google Scholar 

  23. Maser, R.S. & DePinho, R.A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002).

    Article  CAS  Google Scholar 

  24. Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. USA 97, 5357–5362 (2000).

    Article  CAS  Google Scholar 

  25. Gisselsson, D. et al. Abnormal nuclear shape in solid tumors reflects mitotic instability. Am. J. Pathol. 158, 199–206 (2001).

    Article  CAS  Google Scholar 

  26. Rudolph, K.L., Millard, M., Bosenberg, M.W. & DePinho, R.A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  Google Scholar 

  27. DePinho, R.A. The age of cancer. Nature 408, 248–254 (2000).

    Article  CAS  Google Scholar 

  28. Metcalfe, J.A. et al. Accelerated telomere shortening in ataxia telangiectasia. Nat. Genet. 13, 350–353 (1996).

    Article  CAS  Google Scholar 

  29. Bailey, S.M. et al. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc. Natl. Acad. Sci. USA 96, 14899–14904 (1999).

    Article  CAS  Google Scholar 

  30. Ferguson, D.O. et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Natl. Acad. Sci. USA 97, 6630–6633 (2000).

    Article  CAS  Google Scholar 

  31. Hsu, H.L. et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14, 2807–2812 (2000).

    Article  CAS  Google Scholar 

  32. Ma, C., Looney, J.E., Leu, T.H. & Hamlin, J.L. Organization and genesis of dihydrofolate reductase amplicons in the genome of a methotrexate-resistant Chinese hamster ovary cell line. Mol. Cell. Biol. 8, 2316–2327 (1988).

    Article  CAS  Google Scholar 

  33. Kuwahara, Y. et al. Alternative mechanisms of gene amplification in human cancers. Genes Chromosomes Cancer 41, 125–132 (2004).

    Article  CAS  Google Scholar 

  34. Hellman, A. et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1, 89–97 (2002).

    Article  CAS  Google Scholar 

  35. Yao, M.C., Yao, C.H. & Monks, B. The controlling sequence for site-specific chromosome breakage in Tetrahymena. Cell 63, 763–772 (1990).

    Article  CAS  Google Scholar 

  36. Butler, D.K., Yasuda, L.E. & Yao, M.C. An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila. Mol. Cell. Biol. 15, 7117–7126 (1995).

    Article  CAS  Google Scholar 

  37. Albrecht, E.B., Hunyady, A.B., Stark, G.R. & Patterson, T.E. Mechanisms of sod2 gene amplification in Schizosaccharomyces pombe. Mol. Biol. Cell 11, 873–886 (2000).

    Article  CAS  Google Scholar 

  38. Maringele, L. & Lydall, D. Telomerase- and recombination-independent immortalization of budding yeast. Genes Dev. 18, 2663–2675 (2004).

    Article  CAS  Google Scholar 

  39. Grondin, K., Roy, G. & Ouellette, M. Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol. Cell. Biol. 16, 3587–3595 (1996).

    Article  CAS  Google Scholar 

  40. Lobachev, K.S., Gordenin, D.A. & Resnick, M.A. The mre11 complex is required for repair of hairpin-capped double- strand breaks and prevention of chromosome rearrangements. Cell 108, 183–193 (2002).

    Article  CAS  Google Scholar 

  41. Inoue, K. & Lupski, J.R. Molecular mechanisms for genomic disorders. Annu. Rev. Genomics Hum. Genet. 3, 199–242 (2002).

    Article  CAS  Google Scholar 

  42. Barbouti, A. et al. The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic low-copy repeats. Am. J. Hum. Genet. 74, 1–10 (2004).

    Article  CAS  Google Scholar 

  43. Hecht, F., Morgan, R., Hecht, B.K. & Smith, S.D. Common region on chromosome 14 in T-cell leukemia and lymphoma. Science 226, 1445–1447 (1984).

    Article  CAS  Google Scholar 

  44. Skytting, B. et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J. Natl. Cancer Inst. 91, 974–975 (1999).

    Article  CAS  Google Scholar 

  45. YonedaKato, N. et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene NPM-MLF1. Oncogene 12, 265–275 (1996).

    CAS  Google Scholar 

  46. Anderson, J., Gordon, A., Pritchard-Jones, K. & Shipley, J. Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer 26, 275–285 (1999).

    Article  CAS  Google Scholar 

  47. Carrano, A.C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1, 193–199 (1999).

    Article  CAS  Google Scholar 

  48. Yokota, N. et al. Role of Wnt pathway in medulloblastoma oncogenesis. Int. J. Cancer 101, 198–201 (2002).

    Article  CAS  Google Scholar 

  49. Fan, X. et al. hTERT gene amplification and increased mRNA expression in central nervous system embryonal tumors. Am. J. Pathol. 162, 1763–1769 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Delrow and the Fred Hutchinson Cancer Research Center Genomics facility for advice on the array studies and P. Nieman, M. Groudine, B. Trask, C. Kemp, J. Radich, J. Roberts and members of the laboratory of M.-C.Y. for comments on the manuscripts. This work was supported by National Institutes of Health grants from General Medicine (M.-C.Y.) and National Institute of Arthritis, Musculoskeletal and Skin Diseases (S.J.T.) and by the Avon Breast Cancer Crusade Opportunity Fund (to H.T.). H.T. is a recipient of Interdisciplinary Dual Mentor Fellowship of Fred Hutchinson Cancer Research Center (1999 and 2001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng-Chao Yao or Stephen J Tapscott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

MYC is amplified in a large DNA palindrome in Colo320DM. (PDF 193 kb)

Supplementary Fig. 2

Restriction map for the ECM1 gene. (PDF 186 kb)

Supplementary Fig. 3

Cot-1 DNA suppresses hybridization of repetitive sequences. (PDF 155 kb)

Supplementary Table 1

GAPF-positive cytogenetic bands (q-value <0.05 and positive fold-change) in Colo320DM, MCF7, RD and medulloblastomas, and GAPF-positive 5MB bins in Colo320DM and MCF7. (PDF 133 kb)

Supplementary Table 2

GAPF features of genes in three GAPF-positive cytogenetic bands (8q24.1, 1q21 and 7q35) in Colo and MCF7. (PDF 298 kb)

Supplementary Table 3

GAPF-positive genes. (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, H., Bergstrom, D., Yao, MC. et al. Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification. Nat Genet 37, 320–327 (2005). https://doi.org/10.1038/ng1515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing