Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy

Abstract

Spinal muscular atrophy (SMA) is a relatively common neurodegenerative disease caused by homozygous loss of the survival motor neuron 1 (SMN1) gene1. Humans possess a linked, nearly identical gene, SMN2, which produces a functional SMN protein but at levels insufficient to compensate for loss of SMN1 (refs. 1,2). A C/T transition at position +6 in exon 7 is all that differentiates the two genes, but this is sufficient to prevent efficient exon 7 splicing in SMN2 (refs. 2,3). Here we show that the C/T transition functions not to disrupt an exonic splicing enhancer (ESE) in SMN1 (ref. 4), as previously suggested, but rather to create an exonic splicing silencer (ESS) in SMN2. We show that this ESS functions as a binding site for a known repressor protein, hnRNP A1, which binds to SMN2 but not SMN1 exon 7 RNA. We establish the physiological importance of these results by using small interfering RNAs to reduce hnRNP A protein levels in living cells and show that this results in efficient SMN2 exon 7 splicing. Our findings not only define a new mechanism underlying the inefficient splicing of SMN2 exon 7 but also illustrate more generally the remarkable sensitivity and precision that characterizes control of mRNA splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASF/SF2 does not have an essential role in SMN exon 7 splicing.
Figure 2: The C→U transition in SMN2 creates a sequence with properties of an hnRNP A1–dependent ESS.
Figure 3: In vivo depletion of hnRNP A1 or A2 proteins by RNA interference restores SMN2 exon 7 inclusion.
Figure 4: Model for regulation of exon 7 splicing in SMN1 and SMN2 precursor mRNAs.

Similar content being viewed by others

References

  1. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  Google Scholar 

  2. Monani, U.R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  Google Scholar 

  3. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  Google Scholar 

  4. Cartegni, L. & Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    Article  CAS  Google Scholar 

  5. Lorson, C.L. & Androphy, E.J. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 9, 259–265 (2000).

    Article  CAS  Google Scholar 

  6. Hofmann, Y., Lorson, C.L., Stamm, S., Androphy, E.J. & Wirth, B. Htra2-β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl. Acad. Sci. USA 97, 9618–9623 (2000).

    Article  CAS  Google Scholar 

  7. Tacke, R., Tohyama, M., Ogawa, S. & Manley, J.L. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93, 139–148 (1998).

    Article  CAS  Google Scholar 

  8. Manley, J.L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).

    Article  CAS  Google Scholar 

  9. Caceres, J.F., Stamm, S., Helfman, D.M. & Krainer, A.R. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265, 1706–1709 (1994).

    Article  CAS  Google Scholar 

  10. Wang, J. & Manley, J.L. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA 1, 335–346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, J., Takagaki, Y. & Manley, J.L. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10, 2588–2599 (1996).

    Article  CAS  Google Scholar 

  12. Wang, J., Xiao, S.H. & Manley, J.L. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12, 2222–2233 (1998).

    Article  CAS  Google Scholar 

  13. Caputi, M., Mayeda, A., Krainer, A.R. & Zahler, A.M. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J. 18, 4060–4067 (1999).

    Article  CAS  Google Scholar 

  14. Del Gatto-Konczak, F., Olive, M., Gesnel, M.C. & Breathnach, R. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol. Cell. Biol. 19, 251–260 (1999).

    Article  CAS  Google Scholar 

  15. Matter, N. et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J. Biol. Chem. 275, 35353–35360 (2000).

    Article  CAS  Google Scholar 

  16. Hou, V.C. et al. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO J. 21, 6195–6204 (2002).

    Article  CAS  Google Scholar 

  17. Burd, C.G. & Dreyfuss, G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 13, 1197–1204 (1994).

    Article  CAS  Google Scholar 

  18. Bilodeau, P.S., Domsic, J.K., Mayeda, A., Krainer, A.R. & Stoltzfus, C.M. RNA splicing at human immunodeficiency virus type 1 3′ splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. J. Virol. 75, 8487–8497 (2001).

    Article  CAS  Google Scholar 

  19. Mayeda, A., Munroe, S.H., Caceres, J.F. & Krainer, A.R. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J. 13, 5483–5495 (1994).

    Article  CAS  Google Scholar 

  20. Hutchison, S., LeBel, C., Blanchette, M. & Chabot, B. Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5′ splice site selection in the hnRNP A1 mRNA precursor. J. Biol. Chem. 277, 29745–29752 (2002).

    Article  CAS  Google Scholar 

  21. Hofmann, Y. & Wirth, B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-β1. Hum. Mol. Genet. 11, 2037–2049 (2002).

    Article  CAS  Google Scholar 

  22. Young, P.J. et al. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 β1. Hum. Mol. Genet. 11, 577–587 (2002).

    Article  CAS  Google Scholar 

  23. Tange, T.O., Damgaard, C.K., Guth, S., Valcarcel, J. & Kjems, J. The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J. 20, 5748–5758 (2001).

    Article  CAS  Google Scholar 

  24. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  Google Scholar 

  25. Tacke, R. & Manley, J.L. Determinants of SR protein specificity. Curr. Opin. Cell Biol. 11, 358–362 (1999).

    Article  CAS  Google Scholar 

  26. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  Google Scholar 

  27. Wilkinson, M.F. & Shyu, A.B. RNA surveillance by nuclear scanning? Nat. Cell Biol. 4, E144–E147 (2002).

    Article  CAS  Google Scholar 

  28. Tacke, R. & Manley, J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14, 3540–3551 (1995).

    Article  CAS  Google Scholar 

  29. Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  Google Scholar 

  30. Elbashir, S.M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Takebayashi for technical assistance, C.L. Lorson for advice on cloning SMN1 and SMN2 minigene constructs, R. Tacke for providing human Tra2α and Tra2β cDNAs, H.J. Okano for mouse HuD cDNA, J. Kohtz for antibodies to ASF/SF2 and I. Boluk for help preparing the manuscript. This work was supported by grants from the US National Institutes of Health and Families of SMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L Manley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashima, T., Manley, J. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34, 460–463 (2003). https://doi.org/10.1038/ng1207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing