Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned

Abstract

It is widely believed that most or all Y–chromosomal genes were once shared with the X chromosome. The DAZ gene is a candidate for the human Y–chromosomal Azoospermia Factor (AZF). We report multiple copies of DAZ (>99% identical in DNA sequence) clustered in the AZF region and a functional DAZ homologue (DAZH) on human chromosome 3. The entire gene family appears to be expressed in germ cells. Sequence analysis indicates that the Y–chromosomal DAZ cluster arose during primate evolution by (i) transposing the autosomal gene to the Y, (ii) amplifying and pruning exons within the transposed gene and (iii) amplifying the modified gene. These results challenge prevailing views of sex chromosome evolution, suggesting that acquisition of autosomal fertility genes is an important process in Y chromosome evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bull, J.J. Evolution of Sex Determining Mechanisms (Benjamin Cummings, Menlo Park, California, 1983).

    Google Scholar 

  2. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol. 6, 149–162 (1996).

    Article  CAS  Google Scholar 

  3. Ohno, S. Sex Chromosomes and Sex-Linked genes (Springer Verlag, Berlin, 1967).

    Book  Google Scholar 

  4. Rice, W.R. Evolution of the Y sex chromosome in animals. BioScience 46, 331–343 (1996).

    Article  Google Scholar 

  5. Rice, W.R. Degeneration of a nonrecombining chromosome. Science 263, 230–232 (1994).

    Article  CAS  Google Scholar 

  6. Steinemann, M. & Steinemann, S. Degenerating Y chromosome of Drosophila miranda: a trap for retroposons. Proc. Natl. Acad. Sci. USA 89, 7591–7595 (1992).

    Article  CAS  Google Scholar 

  7. Graves, J.A.M. The origin and function of the mammalian Y chromosome and Y-borne genes — an evolving understanding. BioEssays 17, 311–321 (1995).

    Article  CAS  Google Scholar 

  8. Fisher, R.A. The evolution of dominance. Biol. Rev. 6, 345–368 (1931).

    Article  Google Scholar 

  9. Rice, W.R. Sexually antagonistic genes: experimental evidence. Science 256, 1436–1439 (1992).

    Article  CAS  Google Scholar 

  10. Burgoyne, P.S. Fruit (less) flies provide a clue. Nature 381, 740–741 (1996).

    Article  CAS  Google Scholar 

  11. Tiepolo, L. & Zuffardi, 0. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the Y chromosome long arm. Hum. Genet. 34, 119–124 (1976).

    Article  CAS  Google Scholar 

  12. Vergnaud, G. et al. A deletion map of the human Y chromosome based on DNA hybridization. Am. J. Hum. Genet. 38, 109–124 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vollrath, D. et al. The human Y chromosome: a 43-interval map based on naturally occurring deletions. Science 258, 52–59 (1992).

    Article  CAS  Google Scholar 

  14. Foote, S., Vollrath, D., Hilton, A. & Page, D.C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66 (1992).

    Article  CAS  Google Scholar 

  15. Johnson, M.D., Tho, S.P.T., Behzadian, A. & McDonough, P.G. Molecular scanning of Yq11 (interval 6) in men with Sertoli-cell-only syndrome. Am. J. Obstet Gynecol. 161, 1732–1737 (1989).

    Article  CAS  Google Scholar 

  16. Skare, J. et al. Interstitial deletion involving most of Yq. Am. J. Med. Genet. 36, 394–397 (1990).

    Article  CAS  Google Scholar 

  17. Ma, K. et al. Towards the molecular localisation of the AZF locus: mapping of microdeietions in azoospermic men within 14 subintervals of interval 6 of the human Y chromosome. Hum. Molec. Genet. 1, 29–33 (1992).

    Article  CAS  Google Scholar 

  18. Vogt, P.H. et al. Human Y chromosome Azoospermia Factors (AZF) mapped to different subregions in Yq11. Hum. Molec. Genet. 5, 933–943 (1996).

    Article  CAS  Google Scholar 

  19. Reijo, R. et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nature Genet. 10, 383–393 (1995).

    Article  CAS  Google Scholar 

  20. Reijo, R., Alagappan, R.K., Patrizio, P. & Page, D.C. Severe oligospermia resulting from deletions of Azoospermia Factor gene on Y chromosome. The Lancet 347, 1290–1293 (1996).

    Article  CAS  Google Scholar 

  21. Menke, D., Mutter, G. & Page, D.C. Expression of DAZ, an Azoospermia Factor candidate, in human spermatogonia. Am. J. Hum. Genet, (in the press).

  22. Eberhart, C.G., Maines, J.Z. & Wasserman, S.A. Meiotic cell cycle requirement for a fly homologue of human Deleted in Azoospermia. Nature 381, 783–785 (1996).

    Article  CAS  Google Scholar 

  23. Reijo, R. et al. Mouse autosomal homolog of DAZ, a candidate male sterility gene in humans, is expressed in male germ cells before and after puberty. Genomics 35, 346–352 (1996).

    Article  CAS  Google Scholar 

  24. Cooke, H.J. et al. A murine homologue of the human DAZ gene is autosomal and expressed only in male and female gonads. Hum. Mol. Genet. 5, 513–516 (1996).

    Article  CAS  Google Scholar 

  25. Bishop, C., Guellaen, G., Geldwerth, D., Fellous, M. & Weissenbach, J. Extensive sequence homologies between Y and other chromosomes. J. Mol. Biol. 173, 403–417 (1984).

    Article  CAS  Google Scholar 

  26. Ngo, K.Y., Vergnaud, G., Johnsson, C., Lucotte, G. & Weissenbach, J. A DNA probe detecting multiple haplotypes of the human Y chromosome. Am. J. Hum. Genet. 38, 407–418 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lucotte, G., Guerin, P., Halle, L., Loirat, F. & Hazout, S. Y chromosome DNA polymorphisms in two African populations. Am. J. Hum. Genet. 45, 16–20 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Santachiara Benerecetti, A.S. et al. The common, Near Eastern origin of Ashkenazi and Sephardi Jews supported by Y-chromosome similarity. Ann. Hum. Genet. 57, 55–64 (1993).

    Article  CAS  Google Scholar 

  29. Spurdle, A. & Jenkins, T. Y chromosome probe 49a detects complex Pvull haplotypes and many new Taql haplotypes in southern African populations. Am. J. Hum. Genet. 50, 107–125 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lucotte, G., David, F. & Mariotti, M. Nucleotide sequence of p49a, a genomic Y-specific probe with potential utilization in sex determination. Mol. Cell. Probes 5, 359–363 (1991).

    Article  CAS  Google Scholar 

  31. Seboun, E. et al. A molecular approach to the study of the human Y chromosome and anomalies of sex determination in man. Cold Spring Harb. Symp. Quant. Biol. 51, 237–248 (1986).

    Article  CAS  Google Scholar 

  32. Affara, N. et al. Report of the second international workshop on Y chromosome mapping 1995. Cytogenet. Cell Genet. 73, 33–76 (1996).

    Article  CAS  Google Scholar 

  33. Winge, O. The location of eighteen genes in Lebistes reticulatus. J. Genet. 18, 1–43 (1927).

    Article  Google Scholar 

  34. Charlesworth, D. & Charlesworth, B. Sex-differences in fitness and selection for centric fusions between sex chromosomes and autosomes. Genet. Res. 35, 205–214 (1980).

    Article  CAS  Google Scholar 

  35. Page, D.C. Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development 101 Suppl., 151–155 (1987).

    PubMed  Google Scholar 

  36. Hackstein, J.H. & Hochstenbach, R. The elusive fertility genes of Drosophila: the ultimate haven for selfish genetic elements. Trends Genet. 11, 195–200 (1995).

    Article  CAS  Google Scholar 

  37. Rugarli, E. et al. Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice. Nature Genet. 10, 466–471 (1995).

    Article  CAS  Google Scholar 

  38. Palmer, S., Perry, J. & Ashworth, A. A contravention of Ohno's law in mice. Nature Genet. 10, 472–476 (1995).

    Article  CAS  Google Scholar 

  39. Shizuya, H.B. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  Google Scholar 

  40. Chance, P.F. et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–151 (1993).

    Article  CAS  Google Scholar 

  41. Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 (1996).

    Article  CAS  Google Scholar 

  42. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 (1995).

    Article  CAS  Google Scholar 

  43. Burd, C.G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA binding proteins. Science 265, 615–621 (1994).

    Article  CAS  Google Scholar 

  44. Kenan, D.J., Query, C.C. & Keene, J.D. RNA recognition: towards identifying determinants of specificity. Trends Biochem. 16, 214–220 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, R., Brown, L., Hawkins, T. et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat Genet 14, 292–299 (1996). https://doi.org/10.1038/ng1196-292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing