Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes in Drosophila

Abstract

What advantage might sexual recombination confer? Population genetics theory predicts that asexual genomes are less efficient at eliminating deleterious mutations and incorporating beneficial alleles1,2. Here, I compare patterns of genome evolution in a 40-kb gene-rich region on homologous neo-sex chromosomes of Drosophila miranda3. Genes on the non-recombining neo-Y show various signs of degeneration, including transposable-element insertions, frameshift mutations and a higher rate of amino-acid substitution. In contrast, loci on the recombining neo-X show intact open reading frames and generally low rates of amino-acid substitution. One exceptional gene on the neo-X shows evidence for adaptive protein evolution, affecting patterns of variability at neighboring regions along the chromosome. These findings illustrate the limits to natural selection in an asexual genome. Deleterious mutations, including repetitive DNA, accumulate on a non-recombining chromosome, whereas rapid protein evolution due to positive selection is confined to the recombining homolog.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adaptation and degeneration on the neo-sex chromosomes.
Figure 2: Illustration of amino-acid and insertion-deletion changes in the neo-X- and neo-Y-linked genes.

Similar content being viewed by others

References

  1. Barton, N.H. & Charlesworth, B. Why sex and recombination? Science 281, 1986–1990 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachtrog, D. & Charlesworth, B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416, 323–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Rice, W.R. Experimental tests of the adaptive significance of sexual recombination. Nat. Rev. Genet. 3, 241–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Maynard Smith, J. The Evolution of Sex (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  6. Bell, G. The masterpiece of nature (University of California, Berkeley, 1982).

    Google Scholar 

  7. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1563–1572 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bull, J.J. Evolution of Sex Determining Mechanisms (Benjamin Cummings, Menlo Park, California, 1983).

    Google Scholar 

  9. MacKnight, R.H. The sex-determining mechanism of Drosophila miranda. Genetics 24, 180–201 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinemann, M. & Steinemann, S. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 102-103, 409–420 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Rice, W.R. Evolution of the Y sex chromosome in animals. BioScience 46, 331–343 (1996).

    Article  Google Scholar 

  12. Bachtrog, D. & Charlesworth, B. Reduced levels of microsatellite variability on the neo-Y chromosome of Drosophila miranda. Curr. Biol. 10, 1025–1031 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Orr, H.A. & Kim, Y. An adaptive hypothesis for the evolution of the Y chromosome. Genetics 150, 1693–1698 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bachtrog, D. & Charlesworth, B. On the genomic location of the exuperantia 1 gene in Drosophila miranda—the limits of in situ hybridisation experiments. Genetics (in the press).

  15. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  16. Li, W. Molecular evolution (Sinauer Associates, Sunderland, Massachusetts, 1997).

    Google Scholar 

  17. Bachtrog, D. Accumulation of spock and worf, two novel non-LTR retrotransposons on the neo-Y chromosome of Drosophila miranda. Mol. Biol. Evol. 20, 173–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).

    Book  Google Scholar 

  19. Steinemann, M. & Steinemann, S. Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc. Natl. Acad. Sci. USA 89, 7591–7595 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McDonald, J.H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Hudson, R.R., Kreitman, M. & Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article  Google Scholar 

  23. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rice, W.R. Degeneration of a nonrecombining chromosome. Science 263, 230–232 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Rice, W.R. & Chippindale, A.K. Sexual recombination and the power of natural selection. Science 294, 555–559 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Parisi, M. et al. Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299, 697–700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carvalho, A.B. Origin and evolution of the Drosophila Y chromosome. Curr. Opin. Genet. Dev. 12, 664–668 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ohno, S. Evolution by gene duplication (Springer, Berlin, 1970).

    Book  Google Scholar 

Download references

Acknowledgements

I am grateful to P. Andolfatto, B. Charlesworth and S. Wright for discussion and comments on the manuscript. This work was supported by a European Molecular Biology Organisation postdoctoral fellowship and a Royal Society research grant.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachtrog, D. Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes in Drosophila. Nat Genet 34, 215–219 (2003). https://doi.org/10.1038/ng1164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing