Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation of the gene encoding cellular retinaldehyde–binding protein in autosomal recessive retinitis pigmentosa

Abstract

Inadequate levels of all-trans-retinol in the blood cause retinal dysfunction; hence, genes implicated in retinal vitamin-A metabolism represent candidates for inherited retinal degenerations1,2. In the current study, molecular genetic analysis of a consanguineous pedigree segregating for non-syndromic autosomal recessive retinitis pigmentosa (arRP) indicated that the affected siblings were homozygous by descent for a G4763A nucleotide substitution in RLBP1, the gene encoding cellular retinaldehyde-binding protein (CRALBP). This substitution is predicted to replace an arginine with glutamine at residue 150. CRALBP is not expressed in photoreceptors but is abundant in the retinal pigment epithelium (RPE) and Müller cells of the neuroretina, where it carries 11-cis-retinol and 11-cis-retinaldehyde3–5. When expressed in bacteria, recombinant CRALBP (rCRALBP) containing the R150Q substitution was less soluble than wild-type rCRALBP. Mutant rCRALBP was purified from the soluble cell lysate and the protein structure was verified by mass spectrometry. The mutant protein lacked the ability to bind 11-cis-retinaldehyde. These findings suggest that arRP in the current pedigree results from a lack of functional CRALBP, presumably leading to disruption of retinal vitamin-A metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

References

  1. Kemp, C.M., Jacobson, S.G., Faulkner, D.J. & Walt, R.W. Visual function and rhodopsin levels in humans with vitamin A deficiency. Exp. Eye Res. 46, 185–197 (1988).

    Article  CAS  Google Scholar 

  2. Cotran, P.R., Ringens, P.J., Crabb, J.W., Berson, E.L. & Dryja, T.P. Analysis of the DNA of patients with retinitis pigmentosa with a cellular retinaldehyde binding protein cDNA. Exp. Eye Res. 51, 15–19 (1990).

    Article  CAS  Google Scholar 

  3. Crabb, J.W., Goldflam, S., Harris, S.E. & Saari, J.C. Cloning of the cDNAs encoding the cellular retinaldehyde-binding protein from bovine and human retina and comparison of the protein structures. J. Biol. Chem. 263, 18688–18692 (1988).

    CAS  PubMed  Google Scholar 

  4. Saari, J.C. Retinoids in photosensitive systems. in The Retinoids: Biology, Chemistry, and Medicine, 2nd Ed. (eds Sporn, M.B., Roberts, A.B. & Goodman, D.S.) 351–385 (Raven, New York, 1994).

    Google Scholar 

  5. Bunt-Milam, A.H. & Saari, J.C. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biochem. 97, 703–712 (1983).

    CAS  Google Scholar 

  6. Saari, J.C., Bredberg, D.L. & Noy, N. Control of substrate flow at a branch in the visual cycle. Biochemistry 33, 3106–3112 (1994).

    Article  CAS  Google Scholar 

  7. Sparkes, R.S. et al. Assignment of the gene (RLBP1) for cellular retinaldehyde-binding protein (CRALBP) to human chromosome 15q26 and mouse chromosome 7. Genomics 12, 58–62 (1992).

    Article  CAS  Google Scholar 

  8. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  Google Scholar 

  9. Institute for Biomedical Research/MIT Center for Genome Research. Release 11, October (1996).

  10. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  Google Scholar 

  11. Carmi, R. et al. Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Hum. Mol. Genet. 4, 9–13 (1995).

    Article  CAS  Google Scholar 

  12. Intres, R., Goldflam, S., Cook, J.R. & Crabb, J.W. Molecular cloning and structural analysis of the human gene encoding cellular retinaldehyde-binding protein. J. Biol. Chem. 269, 25411–25418 (1994).

    CAS  PubMed  Google Scholar 

  13. Bolhuis, P.A., Ponne, N.J., Bikker, H., Baas, F. & de Jong, J.M.B.V. Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the (β-chain of β-hexosaminidase results in a labile enzyme. Biochim. Biophys. Acta. 1182, 142–146 (1993).

    Article  CAS  Google Scholar 

  14. Arita, M. et al. Human α-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem. J. 306, 437–443 (1995).

    Article  CAS  Google Scholar 

  15. Sato, Y. et al. Primary structure of α-tocopherol transfer protein from rat liver: homology with cellular retinaldehyde-binding protein. J. Biol. Chem. 268, 17705–17710 (1993).

    CAS  PubMed  Google Scholar 

  16. Gu, M., Warshawsky, I. & Majerus, P.W. Cloning and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to retinaldehyde-binding protein and yeast SEC14p. Proc. Natl. Acad. Sci. USA 89, 2980–2984 (1992).

    Article  CAS  Google Scholar 

  17. Del Vecchio, R.L. & Tonks, N.K. Characterization of two structurally related Xenopus laevis protein tyrosine phosphatases with homology to lipid-binding proteins. J. Biol. Chem. 269, 19639–19645 (1994).

    CAS  PubMed  Google Scholar 

  18. Chinen, K., Takahashi, E. & Nakamura, Y. Isolation and mapping of a human gene (SEC14L), partially homologous to yeast SEC14, that contains a variable number of tandem repeats (VNTR) site in its 3′ untranslated region. Cytogenet. Cell. Genet. 73, 218–223 (1996).

    Article  CAS  Google Scholar 

  19. Crabb, J.W., Chen, Y., Goldflam, S., West, K.A & Kapron, J.T. Methods for producing recombinant human cellular retinaldehyde-binding protein. in Techniques in Molecular Biology, Vol. 89: Retinoid Protocols (ed. Redfern, C.) 91–104 (Humana, Totowa, New Jersey, (1997).

    Google Scholar 

  20. Dryja, T.P. & Li, T. Molecular genetics of retinitis pigmentosa. Hum. Mol. Genet. 4, 1739–1743 (1995).

    Article  CAS  Google Scholar 

  21. Gal, S. et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nature Genet. 17, 1994–197 (1997).

    Google Scholar 

  22. Algvere, P.V. Clinical possibilities in retinal pigment epithelial transplantations. Acta Ophthalmol. Scand. 75, 1 (1997).

    Article  CAS  Google Scholar 

  23. Berson, E.L. et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch. Ophthalmol. 111, 761–772 (1993).

    Article  CAS  Google Scholar 

  24. Maw, M. et al. Two Indian siblings with Oguchi disease are homozygous for an arrestin mutation encoding premature termination. Hum. Mutat (in the press).

  25. Knowles, J.A. et al. Identification of a locus, distinct from RDS-peripherin, for autosomal recessive retinitis pigmentosa on chromosome 6p. Hum. Mol. Genet. 3, 1401–1403 (1994).

    Article  CAS  Google Scholar 

  26. Lathrop, G.M., Lalouel, J.-M., Julier, C. & Ott, J. Strategies for multilocus analysis in humans. Proc Natl. Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  27. Schaffer, A.A., Gupta, S.K., Shriram, K. & Cottingham, R.W. Jr. Avoiding recomputation in linkage analysis. Hum. Hered. 44, 225–237 (1994).

    Article  CAS  Google Scholar 

  28. Luck, L.A. et al. NMR methods for analysis of CRALBP retinoid-binding. in Techniques in Protein Chemistry, Vol. VIII (ed. Marshak, D.) (Academic, San Diego, California, in the press).

  29. Crabb, J.W. et al. Topological and epitope mapping of the cellular retinaldehyde-binding protein from retina. J. Biol. Chem. 266, 16674–16683 (1991).

    CAS  PubMed  Google Scholar 

  30. Kapron, J.T. et al. Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion A. Maw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maw, M., Kennedy, B., Knight, A. et al. Mutation of the gene encoding cellular retinaldehyde–binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17, 198–200 (1997). https://doi.org/10.1038/ng1097-198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097-198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing