Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Norrie disease is caused by mutations in an extracellular protein resembling C–terminal globular domain of mucins

Abstract

A candidate gene for Norrie disease, an X–linked disorder characterized by blindness, deafness and mental disturbances, was recently isolated and found to contain microdeletions in numerous patients. No strong homologies were identified. By studying the number and spacing of cysteine residues, we now detect homologies between the Norrie gene product and a C–terminal domain which is common to a group of proteins including mucins. Three newly–characterized missense mutations, replacing evolutionarily conserved cysteines or creating new cysteine codons, emphasize the functional importance of these sites. These findings and the clinical features of this disorder suggest a possible role for the Norrie gene in neuroectodermal cell–cell interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Norrie, G. Causes of blindness in children. Acta Ophtalmol. 5, 357–386 (1927).

    Article  Google Scholar 

  2. Warburg, M. Norrie's disease: A new hereditary bilateral pseudotumor of the retina. Acta Ophtalmol. 39, 757–772 (1961).

    Article  Google Scholar 

  3. Warburg, M. Norrie's disease: A congenital progressive oculo-acoustico-cerebral degeneration. Acta Ophtalmol. 89, 1–147 (1966).

    Google Scholar 

  4. Gal, A., Wieringa, B., Smeets, D.F.C.M., Bleeker-Wagemakers, L.M. & Ropers, H.-H. Submicroscopic interstitial deletion of the X-chromosome explains a complex genetic syndrome dominated by Norrie disease. Cytogenet. Cell Genet. 42, 219–224 (1986).

    Article  CAS  Google Scholar 

  5. Donnai, D., Mountford, R.C. & Read, A.P. Norrie disease resulting from a gene deletion clinical features and DNA studies. J. med. Genet. 25, 73–78 (1988).

    Article  CAS  Google Scholar 

  6. Sims, K.B. et al. The Norrie disease maps to a 150 kb region on chromosome Xp11.3. Hum. molec. Genet. 1, 83–89 (1992).

    Article  CAS  Google Scholar 

  7. Berger, W. et al. Isolation of a candidate gene for Norrie disease by positional cloning. Nature Genet. 1, 199–203 (1992).

    Article  CAS  Google Scholar 

  8. Chen, Z.-Y. et al. Isolation and characterization of a candidate gene for Norrie disease. Nature Genet. 1, 204–208 (1992).

    Article  CAS  Google Scholar 

  9. Casanova, J.L., Pannetier, C., Javlin, C. & Kourilsky, P. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucl. Acids Res. 18, 4028 (1990).

    Article  CAS  Google Scholar 

  10. Eckhardt, A.E., Timpte, C.S., Abernethy, J.L., Zhao, Y. & Hill, R.L. Porcine sub-maxillary mucin contains a cysteine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J. Biochem. 266, 9678–9686 (1991).

    CAS  Google Scholar 

  11. Probst, J.C., Gertzen, E.M. & Hoffmann, W. An integumentary mucin (FIM-B.1) from Xenopus laevis homologous with von Willebrand factor. Biochemistry 29, 6240–6244 (1990).

    Article  CAS  Google Scholar 

  12. Breathnach, R. & Chambon, P. Organization and expression of eucaryotic split genes coding for proteins. Ann. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  13. Rupp, R.A.W. & Sippel, A.E. Chicken liver TGGCA protein purified by preparative mobility shift electrophoresis (PMSE) shows a 36.8 to 29.8 kd microheterogeneity. Nucl. Acids Res. 15, 9707–9726 (1987).

    Article  CAS  Google Scholar 

  14. Gwo-Shu Lee, M., Lewis, S.A., Wilde, C.D. & Cowan, N.J. Evolutionary history of a multigene family an expressed human B-tubulin gene and three processed pseudogenes. Cell 33, 477–487 (1983).

    Article  Google Scholar 

  15. Dudov, K.P. & Perry, R.P. The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene. Cell 37, 457–468 (1984).

    Article  CAS  Google Scholar 

  16. Kyte, J. & Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. molec. Biol. 157, 105–132 (1986).

    Article  Google Scholar 

  17. Pennica, D., Kohr, W.J., Kuang, W.-J., Glaister, D., Aggarwal, B.B., Chen, E.Y. & Goeddel, D.V. Identification of human uromodulin as the tamm horsfall urinary glycoprotein. Science 236, 83–88 (1987).

    Article  CAS  Google Scholar 

  18. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

  19. Argos, P. A sensitive procedure to compare amino acid sequences. J. molec. Biol. 193, 385–391 (1988).

    Article  Google Scholar 

  20. Bhargava, A.K., Woitach, J.T., Davidson, E.A. & Bhavanadan, V.P. Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc. natn. Acad. Sci. U.S.A. 87, 6798–6802 (1990).

    Article  CAS  Google Scholar 

  21. Rothberg, J.M., Jacobs, J.R., Goodman, C.S. & Artavanis-Tsakonas, S. Slit: an extracellular protein necessary for development of midline glia and commisural axon pathways contains both EGF and LRR domains. Genes Devl. 4, 2169–2187 (1990).

    Article  CAS  Google Scholar 

  22. Titani, K. et al. Amino acid sequence of human von Willebrand factor. Biochemistry 25, 3171–3184 (1986).

    Article  CAS  Google Scholar 

  23. Bonthron, D.T. et al. Structure of pre-pro-von Willebrand factor and its expression in heterologous cells. Nature 324, 270–273 (1986).

    Article  CAS  Google Scholar 

  24. Simmons, D.L., Levy, D.B., Yannoni, Y. & Eriksson, R.L. Identification of a phorbol ester-repressible v-src inducible gene. Proc. natn. Acad. Sci. U.S.A. 86, 1178–1182 (1989).

    Article  CAS  Google Scholar 

  25. O'Brien, T.P., Yang, G.P., Sanders, L. & Lau, L.F. Expression of cyr61, a growth factor-inducible immediate-early gene. Molec. Cell Biol. 10, 3569–3577 (1990).

    Article  CAS  Google Scholar 

  26. Higgins, D.G. & Sharp, P.M. CLUSTAL a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244 (1988).

    Article  CAS  Google Scholar 

  27. Hunter, D.D., Shah, V., Merlie, J.P. & Sanes, J.R. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229–234 (1989).

    Article  CAS  Google Scholar 

  28. Vasicek, T.J. et al. Nucleotide sequence of the human parathyroid hormone gene. Proc. natn. Acad. Sci. U.S.A. 80, 2127–2131 (1983).

    Article  CAS  Google Scholar 

  29. Parkinson, D.B. & Thakker, R.V. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nature Genet. 1, 149–152 (1992).

    Article  CAS  Google Scholar 

  30. Colby, W.W., Chen, E.Y., Smith, D.H. & Levinson, A.D. Identification and nucleotide sequence of a human locus homologous to the v-myc oncogene of avian myelocytomatosis virus. Nature 301, 722–725 (1983).

    Article  CAS  Google Scholar 

  31. Battey, J. et al. The human c-myc oncogene structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34, 779–787 (1983).

    Article  CAS  Google Scholar 

  32. Rouault, T.A., Hentze, M.W., Caughman, S.W., Harford, J.B. & Klausner, R.D. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241, 1207–1210 (1987).

    Article  Google Scholar 

  33. Bird, A., Taggart, M., Frommer, M., Miller, O.J. & Macleod, D. A fraction ot the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–100 (1985).

    Article  CAS  Google Scholar 

  34. De Silva, D.G.H. & De Silva, D.B.K. Norrie's disease in an asian family. Brit. J. Ophthalmol. 72, 62–64 (1988).

    Article  Google Scholar 

  35. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human enucleated Cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  36. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specifity. Anal. Biochem. 137, 266–267 (1984).

    Article  CAS  Google Scholar 

  37. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  38. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  39. Haltiner, M., Kempe, T. & Tijan, R. A novel strategy for constructing clustered point mutations. Nucl. Acids Res. 13, 1015–1025 (1985).

    Article  CAS  Google Scholar 

  40. Saiki, R.K. et al. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meindl, A., Berger, W., Meitinger, T. et al. Norrie disease is caused by mutations in an extracellular protein resembling C–terminal globular domain of mucins. Nat Genet 2, 139–143 (1992). https://doi.org/10.1038/ng1092-139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1092-139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing