Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A myogenic differentiation checkpoint activated by genotoxic stress

Abstract

Cell-cycle checkpoints help to protect the genomes of proliferating cells under genotoxic stress. In multicellular organisms, cell proliferation is often directed toward differentiation during development and throughout adult homeostasis. To prevent the formation of differentiated cells with genetic instability, we hypothesized that genotoxic stress may trigger a differentiation checkpoint. Here we show that exposure to genotoxic agents causes a reversible inhibition of myogenic differentiation. Muscle-specific gene expression is suppressed by DNA-damaging agents if applied prior to differentiation induction but not after the differentiation program is established. The myogenic determination factor, MyoD (encoded by Myod1), is a target of the differentiation checkpoint in myoblasts. The inhibition of MyoD by DNA damage requires a functional c-Abl tyrosine kinase (encoded by Abl1), but occurs in cells deficient for p53 (transformation-related protein 53, encoded by Trp53) or c-Jun (encoded by the oncogene Jun). These results support the idea that genotoxic stress can regulate differentiation, and identify a new biological function for DNA damage–activated signaling network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of myogenic differentiation by genotoxic stress.
Figure 2: Genotoxic stress inhibits MyoD function.
Figure 3: Inhibition of myogenic conversion by genotoxic drugs requires c-Abl.
Figure 4: Ectopic expression of nuclear c-Abl sensitizes myoblasts to an MMS-induced differentiation checkpoint.
Figure 5: Tyrosine phosphorylation of MyoD by c-Abl.
Figure 6: Tyrosine-30 phosphorylation of MyoD correlates with inhibition of its transactivation function.

Similar content being viewed by others

References

  1. Friedberg, E.C., Walker, G.C. & Siede, W. DNA Repair and Mutagenesis (AMS Press, Washington, D.C., 1995).

    Google Scholar 

  2. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).

    CAS  PubMed  Google Scholar 

  3. Paulovich, A.G., Toczyski, D.P. & Hartwell, L.H. When checkpoints fail. Cell 88, 315–321 (1997).

    Article  CAS  Google Scholar 

  4. Zhou, B.B. & Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  Google Scholar 

  5. Walsh, K. & Perlman, H. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7, 597–602 (1997).

    Article  CAS  Google Scholar 

  6. Lassar, A. & Munsterberg, A. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr. Opin. Cell Biol. 6, 432–442 (1994).

    Article  CAS  Google Scholar 

  7. Wei, Q. & Paterson, B.M. Regulation of MyoD function in the dividing myoblast. FEBS Lett. 490, 171–178 (2001).

    Article  CAS  Google Scholar 

  8. Puri, P.L. & Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J. Cell. Physiol. 185, 155–173 (2000).

    Article  CAS  Google Scholar 

  9. Molkentin, J.D. & Olson, E.N. Combinatorial control of muscle development by basic helix–loop–helix and MADS-box transcription factors. Proc. Natl Acad. Sci. USA 93, 9366–9373 (1996).

    Article  CAS  Google Scholar 

  10. Rudnicki, M.A. & Jaenisch, R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17, 203–209 (1995).

    Article  CAS  Google Scholar 

  11. Kurabayashi, M., Jeyaseelan, R. & Kedes, L. Doxorubicin represses the function of the myogenic helix–loop–helix transcription factor MyoD. Involvement of Id gene induction. J. Biol. Chem. 269, 6031–6039 (1994).

    CAS  PubMed  Google Scholar 

  12. Puri, P.L. et al. Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. J. Cell. Biochem. 66, 27–36 (1997).

    Article  CAS  Google Scholar 

  13. Liu, Z.G. et al. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 384, 273–276 (1996).

    Article  CAS  Google Scholar 

  14. Wang, J.Y.J. Cellular responses to DNA damage. Curr. Opin. Cell Biol. 10, 240–247 (1998).

    Article  CAS  Google Scholar 

  15. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA 86, 5434–5438 (1989).

    Article  CAS  Google Scholar 

  16. Wang, J.Y.J. Integrative signaling through c-Abl: a tyosine kinase with nuclear and cytoplasmic functions (Humana, Totowa, New Jersey, 2000).

  17. Taagepera, S. et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc. Natl Acad. Sci. USA 95, 7457–7462 (1998).

    Article  CAS  Google Scholar 

  18. Wen, S.T., Jackson, P.K. & Van Etten, R.A. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J. 15, 1583–1595 (1996).

    Article  CAS  Google Scholar 

  19. Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973–982 (1994).

    Article  CAS  Google Scholar 

  20. Sartorelli, V., Huang, J., Hamamori, Y. & Kedes, L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17, 1010–1026 (1997).

    Article  CAS  Google Scholar 

  21. Yuan, W., Condorelli, G., Caruso, M., Felsani, A. & Giordano, A. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271, 9009–9013 (1996).

    Article  CAS  Google Scholar 

  22. Eckner, R., Yao, T.P., Oldread, E. & Livingston, D.M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10, 2478–2490 (1996).

    Article  CAS  Google Scholar 

  23. Puri, P.L. et al. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16, 369–383 (1997).

    Article  CAS  Google Scholar 

  24. Sartorelli, V. & Puri, P.L. The link between chromatin structure, protein acetylation and cellular differentiation. Front. Biosci. 6, D1024–D1047 (2001).

    CAS  PubMed  Google Scholar 

  25. Baskaran, R., Dahmus, M.E. & Wang, J.Y. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl Acad. Sci. USA 90, 11167–11171 (1993).

    Article  CAS  Google Scholar 

  26. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  27. Hartwell, L.H. & Weinert, T.A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    CAS  Google Scholar 

  28. Nouspikel, T. & Hanawalt, P.C. DNA repair in terminally differentiated cells. DNA Repair 1, 59–75 (2002).

    Article  CAS  Google Scholar 

  29. Seale, P., Asakura, A. & Rudnicki, M.A. The potential of muscle stem cells. Dev. Cell 1, 333–342 (2001).

    Article  CAS  Google Scholar 

  30. Blau, H.M., Brazelton, T.R. & Weimann, J.M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    Article  CAS  Google Scholar 

  31. Alema, S. & Tato, F. Oncogenes and muscle differentiation: multiple mechanisms of interference. Semin. Cancer Biol. 5, 147–156 (1994).

    CAS  PubMed  Google Scholar 

  32. Merlino, G. & Helman, L.J. Rhabdomyosarcoma—working out the pathways. Oncogene 18, 5340–5348 (1999).

    Article  CAS  Google Scholar 

  33. Smith, L. et al. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nature Genet. 19, 39–46 (1998).

    Article  CAS  Google Scholar 

  34. Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Sartorelli for discussion and for providing retroviral MyoD and MyoD (Tyr30Phe); M. Montminy, P.J. Woodring and M. Levrero for stimulating discussions; T. Hunter for critically reading the manuscript; L. Kedes and C. Poizat for providing adenoviral FLAG–MyoD; B. Paterson for providing His–MyoD; K. Du for providing polyclonal 293 cells stably transfected with Gal4–Luc; P. Stiegler for C2C12 cells with integrated luciferase reporters (Ckmm–Luc or Trp53–Luc); I.C. Hunton in the laboratory of J.Y.J.W. for the generation of MEFs and 3T3 cells; and J. Meisenhelder and U. Jhala for technical advice on phosphopeptide mapping. This work was supported by the American Cancer Society Postdoctoral Fellowship (L.D.W.), Human Frontiers Postdoctoral Fellowship (P.L.P.), Muscular Dystrophy Association (P.L.P.) and the US National Cancer Institute (J.Y.J.W.). P.L.P. is currently an Assistant Scientist of the Dulbecco Telethon Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pier Lorenzo Puri or Jean Y. J. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, P., Bhakta, K., Wood, L. et al. A myogenic differentiation checkpoint activated by genotoxic stress. Nat Genet 32, 585–593 (2002). https://doi.org/10.1038/ng1023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing