Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex

Abstract

Multiple sclerosis (MS), an inflammatory autoimmune demyelinating disorder of the central nervous system, is the most common cause of acquired neurological dysfunction arising in the second to fourth decades of life1,2. A genetic component to MS is indicated by an increased relative risk of 20–40 to siblings compared to the general population (γs)3–6, and an increased concordance rate in monozygotic compared to dizygotic twins7. Association and/or linkage studies to candidate genes have produced many reports of significant genetic effects including those for the major histocompatability complex (MHC; particularly the HLA-DR2 allele), immunoglobulin heavy chain (IgH), T-cell receptor (TCR) and myelin basic protein (MBP) loci8–17. With the exception of the MHC, however, these results have been difficult to replicate and/or apply beyond isolated populations. We have therefore conducted a two-stage, multi-analytical genomic screen to identify genomic regions potentially harbouring MS susceptibility genes. We geno-typed 443 markers and 19 such regions were identified. These included the MHC region on 6p, the only region with a consistently reported genetic effect. However, no single locus generated overwhelming evidence of linkage. Our results suggest that a multifactorial aetiology, including both environmental and multiple genetic factors of moderate effect, is more likely than an aetiology consisting of simple mendelian disease gene(s)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mauser, S.L. Multiple sclerosis and other demyelinating diseases, in Hamson's Principles of Internal Medicine, 13th edition. (Isselbacher, K, et al., eds.) 2287–2295 (McGraw-Hill, New York, 1994).

    Google Scholar 

  2. Hauser, S.L. et al. Analysis of human T lymphotropic virus sequences in multiple sclerosis. Nature 322, 176–177 (1986).

    Article  CAS  Google Scholar 

  3. Ebers, G.C. & Sadovnick, A.D. The role of genetic factors in multiple sclerosis susceptibility. J.Neuroimmunol. 54, 1017 (1994).

    Article  Google Scholar 

  4. Ebers, G.C., Sadovnick, A.D. & Risch, N.J. A genetic basis for familial aggregation in multiple sclerosis. Nature 377, 150–151 (1995).

    Article  CAS  Google Scholar 

  5. Risch, N. Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am. J. Hum. Genet. 46, 242–253 (1990).

    Google Scholar 

  6. Risch, N. Corrections to “Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs.Am. J. Hum. Genet. 51, 673–675 (1992).

    Google Scholar 

  7. Sadovnick, A.D. et al. A population-based study of multiple sclerosis in twins: update. Ann. Neurol. 33, 281–285 (1993).

    Article  CAS  Google Scholar 

  8. Stewart, G.J., McLeod, J.G., Basten, A. & Bashir, H.V. HLAfamily studies and multiple sclerosis: a common gene, dominantly expressed. Hum. Immunol. 3, 13–29 (1981).

    Article  CAS  Google Scholar 

  9. Mauser, S.L. et al. Extended major histocompatibility complex haplotypes in patients with multiple sclerosis. Neurology 39, 275–277 (1989).

    Article  Google Scholar 

  10. Ebers, G.C., Paty, D.W., Stiller, C.R., Nelson, R.F., Seland, T.P. & Larsen, B. HLA-typing in multiple sclerosis sibling pairs. Lancet 2, 88–90 (1982).

    Article  CAS  Google Scholar 

  11. Kellar-Wood, H.F., Wood, N.W., Holmans, P., Clayton, D., Robertson, N. & Isnm, D.A. Multiple sclerosis and the HLA-D region: linkage and association studies. J. Neuroimmunol. 58, 183–190 (1995).

    Article  CAS  Google Scholar 

  12. Hashimoto, L.L., Mak, T.W. & Ebers, G.C. T-cell alpha chain polymorphisms in multiple sclerosis. J. Neuroimmunol. 40, 41–48 (1992).

    Article  CAS  Google Scholar 

  13. Beall, S.S., Biddison, W., McFarlin, D.E., McFarland, H.F. & Hood, L.E. Susceptibility for multiple sclerosis is determined, in part, by inheritance of a 175-kb region of the TcR Vb chain locus and HLA class II genes. J. Neuroimmunol. 45, 53–60 (1993).

    Article  CAS  Google Scholar 

  14. Seboun, E., Robinson, M.A., Doolittle, T.H., Ciulla, T.A., Kindt, T.J. & Hauser, S.L. A susceptibility locus for multiple sclerosis is linked to the T cell receptor beta chain complex. Cell 57, 1095–1100 (1989).

    Article  CAS  Google Scholar 

  15. Wood, N.W. et al. Susceptibility to multiple sclerosis and the immunoglobulin heavy chain variable region. Neurology 242, 677–682 (1995).

    Article  CAS  Google Scholar 

  16. Boylan, K.B. et al. DNA length polymorphism 5′ to the myelin basic protein gene is associated with multiple sclerosis. Ann. Neurol. 27, 291–297 (1990).

    Article  CAS  Google Scholar 

  17. Tienari, P.J., Terwilliger, J.D., Ott, J., Palo, J. & Peltonen, L. Two-locus linkage analysis in multiple sclerosis (MS). Genomics 19, 320–325 (1994).

    Article  CAS  Google Scholar 

  18. Goodkin, D.E., Doolittle, T.H., Hauser, S.S., Ransohoff, R.M., Roses, A.D. & Rudick, R.A. Diagnostic criteria for multiple sclerosis research involving multiply affected families. Arch. Neurol. 48, 805–807 (1991).

    Article  CAS  Google Scholar 

  19. Clerget-Darpoux, F., Bonaiti-Pellie, C. & Hochez, J. Effects of misspecifying genetic parameters in lod score analysis. Biometrics 42, 393–399 (1986).

    Article  CAS  Google Scholar 

  20. Pericak-Vance, M.A. Overview of linkage analysis in complex traits. in Current Protocols in Human Genetics (eds Dracopoli, N. C. et al.) (John Wiley & Sons, New York, 1996).

    Google Scholar 

  21. Corder, E.H. et al. Apolipoprotein E4 gene dose and the risk of Alzheimer disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  Google Scholar 

  22. Locke, P., Conneally, P.M., Tanzi, R.E., Gusella, J.F. & Haines, J.L. APOE and Alzheimer disease: Examination of allelic association and effect on age at-onset in both early and late-onset cases. Genet. Epidemiol. 12, 83–92 (1995).

    Article  CAS  Google Scholar 

  23. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  Google Scholar 

  24. Thomson, G. Identifying complex disease genes: progress and paradigms. Nature Genet. 8, 189–194 (1994).

    Article  Google Scholar 

  25. Anderson, M.A. & Gusella, J.F. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20, 856–858 (1984).

    Article  CAS  Google Scholar 

  26. Vance, J.M. et al. Linkage of a gene for macular comeal dystrophy to chromosome 16. Am. J. Hum. Genet.(in the press).

  27. Bassam, B.J., Caetano-Anolles, G. & Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem 196, 80–83 (1991).

    Article  CAS  Google Scholar 

  28. Goodkin, D.E., Hertsgaard, D. & Rudnick, R.A. Exacerbation rates and adherence to disease type in a prospectively follow-up population with multiple sclerosis. Implications for clinical trials. Arch. Neurol. 46, 1107–1112 (1989).

    Article  CAS  Google Scholar 

  29. Schaffer, A.A., Gupta, S.K., Shriram, K. & Cottingham, R.W. Avoiding recomputation in linkage analysis. Hum. Hered. 44, 225–237 (1994).

    Article  CAS  Google Scholar 

  30. Davis, S., Schroeder, M., Goldin, L.R. & Weeks, D.E. Nonparametric simulation-based statistics for detecting linkage in general pedigrees. Am. J. Hum. Genet. 58, 867–880 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Haseman, J.K. & Elston, R.C. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19 (1972).

    Article  CAS  Google Scholar 

  32. S.A.G.E.Statistical analysis for genetic epidemiology, Release 2.2 (1994).

  33. Haynes, C.S. et al. PEDIGENE: A comprehensive data management system to facilitate efficient and rapid disease gene mapping. Am. J. Hum. Genet. 57, A193 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haines, J., Ter-Minassian, M., Bazyk, A. et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nat Genet 13, 469–471 (1996). https://doi.org/10.1038/ng0896-469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0896-469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing