Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A homozygous 1–base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese

Abstract

Oguchi disease is a rare autosomal recessive form of congenital stationary night blindness with all other visual functions, including visual acuity, visual field, and colour vision being usually normal1–3. A typical clinical feature of the disorder is a golden or gray-white discolouration of the fundus which disappears in the dark-adapted state and reappears shortly after the onset of light (‘Mizuo phenomenon’; Fig. 1)4. The course of dark adaptation of rod photoreceptors is extremely retarded in Oguchi disease while that of cones appears to proceed normally. The locus for Oguchi disease was recently mapped between D2S172 and D2S345 on distal chromosome 2q by linkage analysis5. Interestingly, the gene for arrestin, an intrinsic rod photoreceptor protein implicated in the recovery phase of light transduction, also maps to this region of chromosome 2q (refs 6,7). Here we report that in five out of six unrelated Japanese patients with Oguchi disease, we have identified a homozygous deletion of nucleotide 1147 (1147delA) in codon 309 of the arrestin gene, predicting a shift in the reading frame and a premature termination of translation which may result in ‘functional null alleles’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oguchi, C. Über eine Abart von Hemeralopie. Acta Soc. Ophthalmol. Jpn. 11, 123–134 (1907).

    Google Scholar 

  2. Carr, R.E. & Gouras, P. Oguchi disease. Arch. Ophthalmol. 73, 646–656 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. Carr, R.E. & Ripps, H. Rhodopsin kinetics and rod adaptation in Oguchi disease. Invest. Ophthalmol. 6, 426–436 (1991).

    Google Scholar 

  4. Mizuo, G. A new discovery in dark adaptation in Oguchi disease. Acta Soc. Ophthalmol. Jpn. 17, 1148–1150 (1913).

    Google Scholar 

  5. Maw, M.A. et al. Oguchi disease: suggestion of linkage to markers on chromosome 2q. J. med. Genet. 32, 396–398 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu-Kuo, J., Ward, D.C. & Spritz, R.A. Fluorescence in situ hybridization mapping of 25 markers on distal human chromosome 2q surrounding the human Waardenburg syndrome type I (WS1) locus (PAX3 gene). Genomics 16, 173–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Valverde, D. et al. Genetic fine localization of the arrestin (S-antigen) gene 4 cM distal from D2S172. Hum. Genet. 94, 193–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Kühn, H., Hall, S.W. & Wilden, U. Light induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett. 176, 473–478 (1984).

    Article  PubMed  Google Scholar 

  9. Wilden, U., Hall, S.W. & Kühn, H. Phoshodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. natn. Acad. Sci. U.S.A. 83, 1174–1178 (1986).

    Article  CAS  Google Scholar 

  10. Palczewski, K., Rispoli, G. & Detwiler, P.B. The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction. Neuron 8, 117–126 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Palczewski, K., McDowell, J.H., Jakes, S., Ingebritsen, T.S. & Hargrave, P.A. Regulation of rhodopsin dephosphorylation by arrestin. J. biol. Chem. 264, 15770–15773 (1989).

    CAS  PubMed  Google Scholar 

  12. Yamaki, K., Tsuda, M. & Shinohara, T. The sequence of human retinal S-antigen reveals similarities with α-transducin. FEBS Lett. 234, 39–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Yamaki, K., Tsuda, M., Kikuchi, T., Chen, K.-H., Huang, K.-P. & Shinohara, T. Structural organization of the human S-antigen gene. J. biol. Chem. 265, 20757–20762 (1990).

    CAS  PubMed  Google Scholar 

  14. Sheffield, V.C., Beck, J.S., Nichols, B., Lidral, C.E.M. Detection of multiallelic polymorphisms within gene sequences by GC-clamped denaturing gradient gel electrophoresis. Am. J. hum. Genet. 50, 567–575 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gal, A., Orth, U., Baehr, W., Schwinger, E. & Rosenberg, T. Heterozygous missense mutation in the rod cGMP phosphodiesterase β-subunit gene in autosomal dominant stationary night blindness. Nature Genet. 7, 64–68 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Dryja, T.P., Berson, E.L., Rao, V.R. & Oprian, D.D. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nature Genet. 4, 280–283 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Rosenfeld, P.J. et al. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nature Genet. 1, 209–213 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. McLaughlin, M.E., Sand berg, M A., Berson, E.L & Dryja, T.D. Recessive mutations in the gene encoding the β-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genet. 4, 130–133 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Dolph, P.J., Ranganathan, R., Colley, N.J., Hardy, R.W., Socolich, M. & Zuker, C.S. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science. 260, 1910–1916 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. de Jong, R.T.V.M., Zrenner, E., van Meel, G.J., Kennen, J.E.E. & van Norren, D. Mizuo phenomenon in X-linked retinoschisis. Arch. Ophthalmol. 109, 1104–1108 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Heckenlively, J.R. & Weleber, R.G. X-linked recessive cone dystrophy with tapetal-like sheen: a newly recognize entity with Mizuo-Nakamura phenomenon. Arch. Ophthalmol. 104, 1322–1328 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Orita, M., Suzuki, Y., Sekyia, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Budowle, B., Chakraborty, R., Ginsti, A., Eisenberg, A. & Alien, R. Analysis of the VNTR Locus D1S80 by the PCR followed by high-resolution PAGE. Am. J. hum. Genet. 48, 137–144 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, S., Nakazawa, M., Maw, M. et al. A homozygous 1–base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10, 360–362 (1995). https://doi.org/10.1038/ng0795-360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing