Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion

Abstract

We have found a 2 kilobase insertion containing a rearranged L1 element in the dystrophin gene of a muscular dystrophy patient. We cloned the precursor of this insertion, the second known active human L1 element. The locus, LRE2, has one allele derived from the patient which matches the insertion sequence exactly. LRE2 has a perfect 13–15 bp target site duplication, two open reading frames, and an unusual 21 bp truncation of the 5′ end, suggesting that a slightly truncated element can still retrotranspose. It differs from LRE1 by 0.7%. There is an L1 element at LRE2 on 66% of human chromosomes 1q, and the element is absent from chimpanzee and gorilla genomes. These data demonstrate that multiple active L1 elements exist in the human genome, and that a readthrough transcript of an active element is capable of retrotransposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burton, F.H. et al. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J. molec. Biol. 187, 291–304 (1986).

    Article  CAS  Google Scholar 

  2. Fanning, T.G. & Singer, M.F. LINE-1: a mammalian transposable element. Biochem. Biophys. Acta 910, 203–212 (1987).

    CAS  PubMed  Google Scholar 

  3. Scott, A.F. et al. Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1, 13–125 (1987).

    Article  Google Scholar 

  4. Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Molec. cell. Biol. 10, 6718–6729 (1990).

    Article  CAS  Google Scholar 

  5. Leibold, D.M. et al. Translation of LINE-1 DNA elements in vitro and in human cells. Proc. natn. Acad. Sci. U.S.A. 87, 6990–6994 (1990).

    Article  CAS  Google Scholar 

  6. Bratthauer, G.L. & Fanning, T.G. LINE-1 retrotransposon expression in pediatric germ cell tumors. Cancer 71, 2383–2386 (1993).

    Article  CAS  Google Scholar 

  7. Martin, S.L. & Branciforte, D. Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Molec. cell. Biol. 13, 5383–5392 (1993).

    Article  CAS  Google Scholar 

  8. Hattori, M., Kuhara, S., Takenaka, O. & Sakaki, Y. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321, 625–628 (1986).

    Article  CAS  Google Scholar 

  9. Xiong, Y. & Eickbush, T.H. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Molec. Biol. Evol. 85, 675–690 (1988).

    Google Scholar 

  10. Doolittle, R.F., Feng, D.F., Johnson, M.S. & McClure, M.A. Origins and evolutionary relationships of retroviruses. Q. Rev. Biol. 64, 1–30 (1989).

    Article  CAS  Google Scholar 

  11. Kazazian, H.H. Jr. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    Article  CAS  Google Scholar 

  12. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian, H.H. Jr., Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    Article  CAS  Google Scholar 

  13. Holmes, S.E., Singer, M.F. & Swergold, G.D. Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J. biol. Chem. 267, 19765–19768 (1992).

    CAS  PubMed  Google Scholar 

  14. Mathias, S.L., Scott, A.F., Kazazian, H.H. Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  Google Scholar 

  15. Dombroski, B.A., Scott, A.F. & Kazazian, H.H. Jr. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc. natn. Acad. Sci. U.S.A. 90, 6513–6517 (1993).

    Article  CAS  Google Scholar 

  16. Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of duchenne muscular dystrophy. J. clin. Invest. 91, 1862–1867 (1993).

    Article  CAS  Google Scholar 

  17. Skowronski, J., Fanning, T.G. & Singer, M.F., Unit-length Line-1 transcripts in human teratocarcinoma cells. Molec. cell. Biol. 8, 1385–1397 (1988).

    Article  CAS  Google Scholar 

  18. Chang-Yeh, A., Jabs, E.W., Li, X., Dracopoli, N.C. & Huang, R.C.C. The IPP gene is assigned to human chromosome 1p32–1p22. Genomics 15, 239–241 (1993).

    Article  CAS  Google Scholar 

  19. Xiong, Y. & Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  Google Scholar 

  20. Mathias, S.L. & Scott, A.F. Promoter binding proteins of an active human L1 retrotransposon. Bioch. Biophys. Res. Comm. 191, 625–632 (1993).

    Article  CAS  Google Scholar 

  21. Becker, K.G., Swergold, G.D., Ozato, K. & Thayer, R.E. Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum. molec. Genet. 10, 1697–1702 (1993).

    Article  Google Scholar 

  22. Minakami, R. et al. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor (s) binding to the element. Nucl. Acids Res. 20, 3139–3145 (1992).

    Article  CAS  Google Scholar 

  23. Swain, A. & Coffin, J.M. Mechanism of transduction by retroviruses. Science 255, 841–845 (1992).

    Article  CAS  Google Scholar 

  24. Boeke, J.D. & Corces, V.G. Transcription and reverse transcription of retrotransposons. A. Rev. Microbiol. 43, 403–434 (1989).

    Article  CAS  Google Scholar 

  25. Jensen, S. & Heidmann, T. An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 10, 1927–1937 (1991).

    Article  CAS  Google Scholar 

  26. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse Transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  Google Scholar 

  27. Deininger, P.L., Batzer, M.A., Hutchison, C.A. & Edgell, M.H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307–311 (1992).

    Article  CAS  Google Scholar 

  28. Monaco, A.P., Bertelson, C.J., Liechti-Gallati, S., Moser, H. & Kunkel, L.M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95 (1988).

    Article  CAS  Google Scholar 

  29. Koenig, M. et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am. J. hum. Genet. 45, 498–506 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Robberson, B., Cote, G.J. & Berget, S. Exon definition may facilitate splice site selection in RNAs with multiple exons. Molec. cell. Biol. 10, 84–94 (1990).

    Article  CAS  Google Scholar 

  31. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  32. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a tharmostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, S., Dombroski, B., Krebs, C. et al. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7, 143–148 (1994). https://doi.org/10.1038/ng0694-143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0694-143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing