Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The Human Phenome Project

A principal goal of genetic research is to identify specific genotypes that are associated with human phenotypes. It will soon be possible to conduct genome-wide genotyping on a massive scale. Our current approaches for defining and assaying phenotypes may be inadequate for making optimal use of such genotypic data. We propose an international effort to create phenomic databases, that is, comprehensive assemblages of systematically collected phenotypic information, and to develop new approaches for analyzing such phenotypic data. We term this effort the Human Phenome Project and suggest a scientific and organizational scope for the project.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phenomic approach in a non-human primate.
Figure 2: The phenomic approach in birth cohort studies.

References

  1. Mitchell, P. UK launches ambitious tissue/data bank project. Nat. Biotechnol. 20, 529 (2002).

    Article  CAS  Google Scholar 

  2. Syvanen, A.C. Accessing genetic variation: genotyping single-nucleotide polymorphisms. Nat. Rev. Genet. 2, 930–942 (2001).

    Article  CAS  Google Scholar 

  3. Couzin, J. HapMap launched with pledges of $100 million. Science 298, 941–942 (2002).

    Article  CAS  Google Scholar 

  4. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001)

    Article  CAS  Google Scholar 

  5. Daly, M. et al. High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001)

    Article  CAS  Google Scholar 

  6. Mahner, M. & Kary, M. What exactly are genomes, genotypes and phenotypes? And what about phenomes? J. Theor. Biol. 186, 55–63 (1997).

    Article  CAS  Google Scholar 

  7. Golding, J. et al. ALSPAC—The Avon Longitudinal Study of Parents and Children I. Study Methodology. Paediatr. Perinat. Epidemiol. 15, 74–87 (2001).

    Article  CAS  Google Scholar 

  8. Cardno, A.G. et al. A twin study of genetic relationships between psychotic symptoms. Am. J. Psychiatr. 159, 539–545 (2002).

    Article  Google Scholar 

  9. Feijen, M., Gerritsen, J. & Postma, D.S. Genetics of allergic disease. Br. Med. Bull. 56, 894–907 (2000).

    Article  CAS  Google Scholar 

  10. Yazdanbakhsh, M., Kremsner, P.G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).

    Article  CAS  Google Scholar 

  11. Kelsey, J.F. & Nemeroff, C.B. Selective serotonin reuptake inhibitors. in Comprehensive Textbook of Psychiatry 7th edn. (eds. Sadock, B.J. & Sadock, V.A.) 2432–2435 (Lippincott Williams & Williams, Philadelphia, 2000).

    Google Scholar 

  12. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  13. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. 98, 15149–15154 (2001).

    Article  CAS  Google Scholar 

  14. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  15. Paigen, K. & Eppig, J.T. A mouse phenome project. Mammal. Genome 11, 715–717 (2000)

    Article  CAS  Google Scholar 

  16. Peters, L.L. et al. Large-scale, high-throughput screening for coagulation and hematologic phenotypes in mice. Physiol. Genomics 11, 185–193 (2002).

    Article  CAS  Google Scholar 

  17. Jacob, H.J. & Kwitek, A.E. Rat genetics: attaching physiology and pharmacology to the genome. Nat. Rev. Genet. 3, 33–42 (2002).

    Article  CAS  Google Scholar 

  18. Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1293–1322 (2001).

    Article  CAS  Google Scholar 

  19. Rantakallio, P. Groups at risk in low birth weight infants and perinatal mortality. Acta Paed. Scand. Suppl. 193, 1–71 (1969).

    Google Scholar 

  20. Järvelin, M-R. et al. Ecological and individual predictors of birth weight among the Northern Finland birth cohort for 1986. Paediatr. Perinat. Epidemiol. 11, 298–312 (1997).

    Article  Google Scholar 

  21. Peltonen, L., Palotie, A. & Lange, K. Use of population isolates for mapping complex traits. Nat. Rev. Genet. 1, 182–190 (2000).

    Article  CAS  Google Scholar 

  22. Almasy, L., Dyer, T. & Blangero, J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet. Epidemiol. 14, 953–958 (1997).

    Article  CAS  Google Scholar 

  23. Kaufman, L. & Rousseeuw, P.J. Finding Groups in Data. (Wiley, New York, 1990).

    Book  Google Scholar 

  24. Breiman, L. et al. Classification and Regression Trees. (Chapman & Hall, New York, 1984).

    Google Scholar 

  25. Breiman, L. Random forests, random features. (Technical Report 567; Department of Statistics, University of California, Berkeley; 1999).

    Google Scholar 

  26. Vapnik, V.N. The Nature of Statistical Learning Theory. (Springer, New York, 1995).

    Book  Google Scholar 

  27. Silverman, B.W. Density Estimation for Statistics and Data Analysis. (Chapman & Hall, New York, 1986).

    Book  Google Scholar 

  28. Mardia, K.V., Kent, J.T. & Bibby, J.M. Multivariate Analysis. (Academic, London, 1979).

  29. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).

    Google Scholar 

  30. Barron, A., Rissanen, J. & Yu, B. The minimum description length principle in coding and modeling. IEEE Trans. Inform. Theory. 44, 2743–2760 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Blower, L. Sandkuijl and S. Service for comments. The authors are supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Freimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freimer, N., Sabatti, C. The Human Phenome Project. Nat Genet 34, 15–21 (2003). https://doi.org/10.1038/ng0503-15

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0503-15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing