Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human gene targeting by viral vectors

Abstract

Stable transduction of mammalian cells typically involves random integration of viral vectors by non-homologous recombination. Here we report that vectors based on adeno-associated virus (AAV) can efficiently modify homologous human chromosomal target sequences. Both integrated neomycin phosphotransferase genes and the hypoxanthine phosphoribosyltransferase gene were targeted by AAV vectors. Site-specific genetic modifications could be introduced into approximately 1% of cells, with the highest targeting rates occurring in normal human fibroblasts. These results suggest that AAV vectors could be used to introduce specific genetic changes into the genomic DNA of a wide variety of mammalian cells, including therapeutic gene targeting applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zinder, N.D. & Lederberg, J. Genetic exchange in Salmonella. J. Bacterial. 64, 679–699 (1952).

    Article  CAS  Google Scholar 

  2. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, K.R., Folger, K.R. & Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Doetschman, T. et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Ellis, J. & Bernstein, A. Gene targeting with retroviral vectors: recombination by gene conversion into regions of nonhomology. Mol. Cell. Biol. 9, 1621–1627 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Q. & Taylor, M.W. Correction of a deletion mutant by gene targeting with an adenovirus vector. Mol. Cell. Biol. 13, 918–927 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitani, K. et al. Gene targeting in mouse embryonic stem cells with an adenoviral vector. Somat Cell Mol. Genet. 21, 221–231 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Muzyczka, N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158, 97–129 (1992).

    CAS  PubMed  Google Scholar 

  10. McLaughlin, S.K., Collis, P., Hermonat, P.L. & Muzyczka, N. Adeno-associated virus general transduction vectors: analysis of proviral structures. J. Virol. 62, 1963–1973 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lebkowski, J.S., McNally, M.M., Okarma, T.B. & Lerch, L.B. Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol. Cell. Biol. 8, 3988–3996 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walsh, C.E. et al. Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 89, 7257–7261 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Russell, D.W., Miller, A.D. & Alexander, I.E. Adeno-associated virus vectors preferentially transduce cells in S phase. Proc. Natl. Acad. Sci. USA 91, 8915–8919 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rutledge, E.A. & Russell, D.W. Adeno-associated virus vector integration junctions. J. Virol. 71, 8429–8436 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rasheed, S., Nelson Rees, W.A., Toth, E.M., Arnstein, P. & Gardner, M.B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Patel, P.I., Framson, P.E., Caskey, C.T. & Chinault, A.C. Fine structure of the human hypoxanthine phosphoribosyltransferase gene. Mol. Cell. Biol. 6, 393–403 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertran, J. et al. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors. J. Virol. 70, 6759–6766 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kotin, R.M. et al. Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 87, 2211–2215 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Samulski, R.J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19 [published erratum appears in EMBO J. 11, 1228 (1992)]. EMBO J. 10, 3941–3950 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Itzhaki, J.E. & Porter, A.C. Targeted disruption of a human interferon-inducible gene detected by secretion of human growth hormone. Nucleic Acids Res. 19, 3835–3842 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Porter, A.C. & Itzhaki, J.E. Gene targeting in human somatic cells. Complete inactivation of an interferon-inducible gene. Eur. J. Biochem. 218, 273–281 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly, A. et al. Targeted insertions of two exogenous collagen genes into both alleles of their endogenous loci in cultured human cells: the insertions are directed by relatively short fragments containing the promoters and the 5′ ends of the genes. Proc. Natl. Acad. Sci. USA 91, 7365–7369 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thyagarajan, B., Johnson, B.L. & Campbell, C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res. 23, 2784–2790 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, J.P., Wei, W. & Sedivy, J.M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Brinster, R.L. et al. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc. Natl. Acad. Sci. USA 86, 7087–7091 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zimmer, A. & Gruss, P. Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeobox Hox 1. 1 allele mutated by homologous recombination. Nature 338, 150–153 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Fujioka, K., Aratani, Y., Kusano, K. & Koyama, H. Targeted recombination with single-stranded DNA vectors in mammalian cells. Nucleic Acids Res. 21, 407–412 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, H. & Wilson, J.H. Gene targeting in normal and amplified cell lines. Nature 344, 170–173 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Deng, C. & Capecchi, M.R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scherer, W.F., Syverton, J.T. & Gey, G.O. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 97, 695–709 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Koeberl, D.D., Alexander, I.E., Halbert, C.L., Russell, D.W. & Miller, A.D. Persistent expression of human factor IX from mouse liver after intravenous injection of AAV vectors. Proc. Natl. Acad. Sci. USA 94, 1426–1431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. A Laboratory Handbook. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  34. Ryan, J.H., Zolotukhin, S. & Muzyczka, N. Sequence requirements for binding of Rep68 to the adeno-associated virus terminal repeats. J. Virol. 70, 1542–1553 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossiter, B.J.F., Grompe, M. & Caskey, C.T. in PCR. A Practical Approach. (eds McPherson, M.J., Quirke, P. & Taylor, G.R.) 67–83 (IRL Press, Oxford, England, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, D., Hirata, R. Human gene targeting by viral vectors. Nat Genet 18, 325–330 (1998). https://doi.org/10.1038/ng0498-325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing