Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome

Abstract

Angelman syndrome (AS) is associated with maternal deletions of human chromosome 15q11–q13 and with paternal uniparental disomy for this region indicating that deficiency of an imprinted, maternally expressed gene within the critical interval is the likely cause of the syndrome. Although the gene for E6-AP ubiquitin-protein ligase (UBE3A) was mapped to the critical region for AS, evidence of expression from both parental alleles initially suggested that it was an unlikely candidate gene for this disorder. Because attempts to identify any novel maternally expressed transcripts were unsuccessful and because the UBE3A gene remained within a narrowed AS critical region, we searched for mutations in UBE3A in 11 AS patients without known molecular defects (large deletion, uniparental disomy, or imprinting mutation). This analysis tested the possibility that deficiency of an undefined, maternally expressed transcript or isoform of the UBE3A gene could cause AS. Four mutations were identified including a de novo frameshift mutation and a de novo nonsense mutation in exon 3 and two missense mutations of less certain significance. The de novo truncating mutations indicate that UBE3A is the AS gene and suggest the possibility of a maternally expressed gene product in addition to the biallelically expressed transcript. Intragenic mutation of UBE3A in AS is the first example of a genetic disorder of the ubiquitin-dependent proteolytic pathway in mammals. It may represent an example of a human genetic disorder associated with a locus producing functionally distinct imprinted and biallelically expressed gene products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicholls, R.D. New insights reveal complex mechanisms involved in genomic imprinting. Am. J. Hum. Genet. 54, 733–740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ledbetter, D.H. & Ballabio, A. Molecular cytogenetics of contiguous gene syndromes: Mechanisms and consequences of gene dosage imbalance. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, A.L,Sly, W.S. & Valle, D.)7thed. 811–839(McGraw-Hill, New York, 1995).

  3. Özçelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  Google Scholar 

  4. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  CAS  Google Scholar 

  5. Glenn, C.C. et al. Modification of 15q11-q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum. Mol. Genet. 2, 1377–1382 (1993).

    Article  CAS  Google Scholar 

  6. Sutcliffe, J.S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet. 8, 52–58 (1994).

    Article  CAS  Google Scholar 

  7. Wevrick, R., Kerns, J.A. & Francke, U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum. Mol. Genet. 3, 1877–1882 (1994).

    Article  CAS  Google Scholar 

  8. Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    Article  CAS  Google Scholar 

  9. Nakao, M. et al. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Mol. Genet. 3, 309–315 (1994).

    Article  CAS  Google Scholar 

  10. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell Biol 13, 775–784 (1993).

    Article  CAS  Google Scholar 

  11. Huibregtse, J.M., Scheffner, M. & Howley, P.M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129–4135 (1991).

    Article  CAS  Google Scholar 

  12. Saitoh, S., Kubota, T., Ohta, T., Jinno, Y. & Niikawa, N., Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor 3-subunitgene. Lancet 339, 366–367 (1992).

    Article  CAS  Google Scholar 

  13. Burke, L.W. et al. Familial cryptic translocation resulting in Angelman syndrome: Implications for imprinting or location of the Angelman gene? Am. J. Hum. Genet. 58, 777–784 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Woodage, T. et al. Physical mapping studies at D15S10: Implications for candidate gene identification in the Angelman syndrome/Prader-Willi syndrome chromosome region of 15q11-q13. Genomics 19, 170–172 (1994).

    Article  CAS  Google Scholar 

  15. Williams, C.A. et al. Angelman syndrome: Consensus for diagnostic criteria. Am. J. Med. Genet. 56, 237–238 (1995).

    Article  CAS  Google Scholar 

  16. Vu, T.H. & Hoffman, A.R. Promoter-specific imprinting of the human insulin-like growth factor-ll gene. Nature 371, 714–717 (1994).

    Article  CAS  Google Scholar 

  17. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  18. Meijers-Heijboer, E.J. et al. Linkage analysis with chromosome 15q11-13 markers shows genomic imprinting in familial Angelman syndrome. J. Med. Genet. 29, 853–857 (1992).

    Article  CAS  Google Scholar 

  19. Wagstaff, J., Shugart, Y.Y. & Lalande, M. Linkage analysis in familial Angelman syndrome. Am. J. Hum. Genet. 53, 105–112 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jentsch, S. The ubiquitin-conjugation system. Annu. Rev. Genet. 26, 179–207 (1992).

    Article  CAS  Google Scholar 

  21. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994).

    Article  CAS  Google Scholar 

  22. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  Google Scholar 

  23. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. U.S.A. 92, 2563–2567 (1995).

    Article  CAS  Google Scholar 

  24. Jentsch, S. & Schlenker, S. Selective protein degradation: a journey's end within the proteasome. Cell 82, 881–884 (1995).

    Article  CAS  Google Scholar 

  25. Hochstrasser, M. Protein degradation or regulation: Ub the judge. Cell 84, 813–815 (1996).

    Article  CAS  Google Scholar 

  26. Chen, Z.J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IB by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996).

    Article  CAS  Google Scholar 

  27. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    Article  CAS  Google Scholar 

  28. Matuschewski, K., Hauser, H.P., Treier, M. & Jentsch, S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J. Biol. Chem. 271, 2789–2794 (1996).

    Article  CAS  Google Scholar 

  29. Oh, C.E., McMahon, R., Benzer, S. & Tanouye, M.A. bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog j. Neurosci. 14, 3166–3179 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Beaudet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuura, T., Sutcliffe, J., Fang, P. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15, 74–77 (1997). https://doi.org/10.1038/ng0197-74

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0197-74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing