Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A de novo paradigm for mental retardation

Abstract

The per-generation mutation rate in humans is high. De novo mutations may compensate for allele loss due to severely reduced fecundity in common neurodevelopmental and psychiatric diseases, explaining a major paradox in evolutionary genetic theory. Here we used a family based exome sequencing approach to test this de novo mutation hypothesis in ten individuals with unexplained mental retardation. We identified and validated unique non-synonymous de novo mutations in nine genes. Six of these, identified in six different individuals, are likely to be pathogenic based on gene function, evolutionary conservation and mutation impact. Our findings provide strong experimental support for a de novo paradigm for mental retardation. Together with de novo copy number variation, de novo point mutations of large effect could explain the majority of all mental retardation cases in the population.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental work flow for detecting and prioritizing sequence variants.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Roach, J.C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keller, M.C. & Miller, G. Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav. Brain Sci. 29, 385–404 (2006).

    Article  PubMed  Google Scholar 

  4. Uher, R. The role of genetic variation in the causation of mental illness: an evolution-informed framework. Mol. Psychiatry 14, 1072–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Cook, E.H. Jr. & Scherer, S.W. Copy-number variations associated with neuropsychiatric conditions. Nature 455, 919–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. de Vries, B.B. et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77, 606–616 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ng, S.B. et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42, 30–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Lupski, J.R. et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N. Engl. J. Med. 362, 1181–1191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 42, 483–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Sobreira, N.L. et al. Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet. 6, e1000991 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tarpey, P.S. et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet. 41, 535–543 (2010).

    Article  Google Scholar 

  12. Jensen, L.R. et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Mulero, J.J. et al. Three new human members of the lipid transfer/lipopolysaccharide binding protein family (LT/LBP). Immunogenetics 54, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Taggart, R.T. et al. Relationships between the human pepsinogen DNA and protein polymorphisms. Am. J. Hum. Genet. 38, 848–854 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Giannandrea, M. et al. Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am. J. Hum. Genet. 86, 185–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamdan, F.F. et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N. Engl. J. Med. 360, 599–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, X.J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J. Neurosci. 27, 14515–14524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsujikawa, M., Omori, Y., Biyanwila, J. & Malicki, J. Mechanism of positioning the cell nucleus in vertebrate photoreceptors. Proc. Natl. Acad. Sci. USA 104, 14819–14824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tai, C.Y., Dujardin, D.L., Faulkner, N.E. & Vallee, R.B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156, 959–968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He, Y. & Casaccia-Bonnefil, P. The Yin and Yang of YY1 in the nervous system. J. Neurochem. 106, 1493–1502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forlani, G. et al. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis. Hum. Mol. Genet. 19, 3114–3123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veraksa, A., Kennison, J. & McGinnis, W. DEAF-1 function is essential for the early embryonic development of Drosophila. Genesis 33, 67–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Hahm, K. et al. Defective neural tube closure and anteroposterior patterning in mice lacking the LIM protein LMO4 or its interacting partner Deaf-1. Mol. Cell. Biol. 24, 2074–2082 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, C.J. et al. CIC, a member of a novel subfamily of the HMG-box superfamily, is transiently expressed in developing granule neurons. Brain Res. Mol. Brain Res. 106, 151–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Whibley, A.C. et al. Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability. Am. J. Hum. Genet. 87, 173–188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marth, G.T. et al. A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23, 452–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pushkarev, D., Neff, N.F. & Quake, S.R. Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venables, W.N. & Ripley, B.D. Modern Applied Statistics with S (Springer, 4th edn., New York, New York, USA, 2002).

  31. Lilliefors, H. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. de Reuver and J. Hehir-Kwa for bioinformatics support in data analysis and personnel from the Sequencing Facility of our department for timely completion of Sanger sequencing of validation experiments. This work was funded in part by grants from The Netherlands Organization for Health Research and Development (ZonMW grants 916-86-016 to L.E.L.M.V., 917-66-36 and 911-08-025 to J.A.V. and 917-86-319 to B.B.A.d.V.), the EU-funded TECHGENE project (Health-F5-2009-223143 to J.d.L. and J.A.V.) and the AnEUploidy project (LSHG-CT-2006-37627 to A.H., B.W.M.v.B., H.G.B., B.B.A.d.V. and J.A.V.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.V., L.E.L.M.V. and H.G.B. conceived the project and planned the experiments. B.B.A.d.V. and B.W.M.v.B. performed sample collection and reviewed phenotypes. L.E.L.M.V., A.H., I.J., M.S., P.d.V., B.v.L. and P.A. performed next-generation sequencing experiments using a custom pipeline set up by C.G. and A.H. J.d.L. and C.G. analyzed and interpreted the data with support from N.W. and M.d.R. L.E.L.M.V., P.d.V., I.J. and M.S. performed validation experiments. L.E.L.M.V., J.d.L. and J.A.V. prepared the first draft of the manuscript. All authors contributed to the final manuscript.

Corresponding authors

Correspondence to Han G Brunner or Joris A Veltman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1 and 2 and Supplementary Figures 1–5 (PDF 1579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vissers, L., de Ligt, J., Gilissen, C. et al. A de novo paradigm for mental retardation. Nat Genet 42, 1109–1112 (2010). https://doi.org/10.1038/ng.712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing