Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of liver-specific enhancer–promoter activity in the 3′ untranslated region of the wild-type AAV2 genome

Abstract

Vectors based on adeno-associated virus type 2 (AAV2) are powerful tools for gene transfer and genome editing applications1,2. The level of interest in this system has recently surged in response to reports of therapeutic efficacy in human clinical trials, most notably for those in patients with hemophilia B (ref. 3). Understandably, a recent report drawing an association between AAV2 integration events and human hepatocellular carcinoma (HCC)4 has generated controversy about the causal or incidental nature of this association and the implications for AAV vector safety5,6,7,8,9. Here we describe and functionally characterize a previously unknown liver-specific enhancer–promoter element in the wild-type AAV2 genome that is found between the stop codon of the cap gene, which encodes proteins that form the capsid, and the right-hand inverted terminal repeat. This 124-nt sequence is within the 163-nt common insertion region of the AAV genome, which has been implicated in the dysregulation of known HCC driver genes4 and thus offers added insight into the possible link between AAV integration events and the multifactorial pathogenesis of HCC10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An AAV vector lacking a heterologous promoter drives transgene expression in vitro and in vivo.
Figure 2: Mapping of the 3′ UTR of the cap gene in WT AAV2 for transcriptional activity.
Figure 3: The 2/1-105wt element has ITR-independent enhancer–promoter activity.
Figure 4: The 2/1-105wt element from WT AAV2 operates in a cell-type-specific manner and drives transgene expression in mouse and human hepatocytes in vivo.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

References

  1. Mingozzi, F. & High, K.A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gaj, T., Epstein, B.E. & Schaffer, D.V. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol. Ther. 24, 458–464 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Nathwani, A.C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nault, J.C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Russell, D.W. & Grompe, M. Adeno-associated virus finds its disease. Nat. Genet. 47, 1104–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Büning, H. & Schmidt, M. Adeno-associated vector toxicity—to be or not to be? Mol. Ther. 23, 1673–1675 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Berns, K.I. et al. Adeno-associated virus type 2 and hepatocellular carcinoma? Hum. Gene Ther. 26, 779–781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nault, J.C. et al. Wild-type AAV insertions in hepatocellular carcinoma do not inform debate over genotoxicity risk of vectorized AAV. Mol. Ther. 24, 660–661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt, M., Gil-Farina, I. & Büning, H. Reply to “Wild-type AAV insertions in hepatocellular carcinoma do not inform debate over genotoxicity risk of vectorized AAV”. Mol. Ther. 24, 661–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balogh, J. et al. Hepatocellular carcinoma: a review. J. Hepatocell. Carcinoma 3, 41–53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Calcedo, R., Vandenberghe, L.H., Gao, G., Lin, J. & Wilson, J.M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    Article  PubMed  Google Scholar 

  12. Thwaite, R., Pagès, G., Chillón, M. & Bosch, A. AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy. Gene Ther. 22, 196–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Atchison, R.W., Casto, B.C. & Hammon, W.M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).

    Article  CAS  PubMed  Google Scholar 

  14. Hoggan, M.D., Blacklow, N.R. & Rowe, W.P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological and immunological characteristics. Proc. Natl. Acad. Sci. USA 55, 1467–1474 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaiss, A.K. et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J. Virol. 76, 4580–4590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Casto, B.C., Atchison, R.W. & Hammon, W.M. Studies on the relationship between adeno-associated virus type I (AAV1) and adenoviruses. I. Replication of AAV1 in certain cell cultures and its effect on helper adenovirus. Virology 32, 52–59 (1967).

    Article  CAS  PubMed  Google Scholar 

  17. Mayor, H.D., Drake, S., Stahmann, J. & Mumford, D.M. Antibodies to adeno-associated satellite virus and herpes simplex in sera from cancer patients and normal adults. Am. J. Obstet. Gynecol. 126, 100–104 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Georg-Fries, B., Biederlack, S., Wolf, J. & zur Hausen, H. Analysis of proteins, helper dependence and sero-epidemiology of a new human parvovirus. Virology 134, 64–71 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Heilbronn, R., Bürkle, A., Stephan, S. & zur Hausen, H. The adeno-associated virus rep gene suppresses herpes simplex virus–induced DNA amplification. J. Virol. 64, 3012–3018 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Alam, S., Bowser, B.S., Israr, M., Conway, M.J. & Meyers, C. Adeno-associated virus type 2 infection of nude mouse human breast cancer xenograft induces necrotic death and inhibits tumor growth. Cancer Biol. Ther. 15, 1013–1028 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samulski, R.J., Berns, K.I., Tan, M. & Muzyczka, N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl. Acad. Sci. USA 79, 2077–2081 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laughlin, C.A., Tratschin, J.D., Coon, H. & Carter, B.J. Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23, 65–73 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Samulski, R.J., Chang, L.S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Senapathy, P., Tratschin, J.D. & Carter, B.J. Replication of adeno-associated virus DNA. Complementation of naturally occurring rep mutants by a wild-type genome or an ori mutant and correction of terminal palindrome deletions. J. Mol. Biol. 179, 1–20 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Rabinowitz, J.E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urabe, M., Ding, C. & Kotin, R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Russell, D.W. & Hirata, R.K. Human gene targeting by viral vectors. Nat. Genet. 18, 325–330 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, D.G. et al. Gene targeting in vivo by adeno-associated virus vectors. Nat. Biotechnol. 24, 1022–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Flotte, T. et al. A phase 1 study of an adeno-associated virus–CFTR gene vector in adult CF patients with mild lung disease. Hum. Gene Ther. 7, 1145–1159 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Hastie, E. & Samulski, R.J. Adeno-associated virus at 50: a golden anniversary of discovery, research and gene therapy success—a personal perspective. Hum. Gene Ther. 26, 257–265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cunningham, S.C., Dane, A.P., Spinoulas, A. & Alexander, I.E. Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol. Ther. 16, 1081–1088 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Dane, A.P., Cunningham, S.C., Graf, N.S. & Alexander, I.E. Sexually dimorphic patterns of episomal rAAV genome persistence in the adult mouse liver and correlation with hepatocellular proliferation. Mol. Ther. 17, 1548–1554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doolittle, D.P., Hulbert, L.L. & Cordy, C. A new allele of the sparse fur gene in the mouse. J. Hered. 65, 194–195 (1974).

    Article  CAS  PubMed  Google Scholar 

  34. Cunningham, S.C. et al. AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spfash mice. Mol. Ther. 17, 1340–1346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flotte, T.R. et al. Gene expression from adeno-associated virus vectors in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 7, 349–356 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Flotte, T.R. et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J. Biol. Chem. 268, 3781–3790 (1993).

    CAS  PubMed  Google Scholar 

  37. Rubenstein, R.C., McVeigh, U., Flotte, T.R., Guggino, W.B. & Zeitlin, P.L. CFTR gene transduction in neonatal rabbits using an adeno-associated virus (AAV) vector. Gene Ther. 4, 384–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Haberman, R.P., McCown, T.J. & Samulski, R.J. Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J. Virol. 74, 8732–8739 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Odom, D.T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berthet, C., Raj, K., Saudan, P. & Beard, P. How adeno-associated virus Rep78 protein arrests cells completely in S phase. Proc. Natl. Acad. Sci. USA 102, 13634–13639 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Q., Chen, F. & Trempe, J.P. Characterization of cell lines that inducibly express the adeno-associated virus Rep proteins. J. Virol. 68, 4847–4856 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gil-Farina, I. et al. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol. Ther. 24, 1100–1105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chandler, R.J., LaFave, M.C., Varshney, G.K., Burgess, S.M. & Venditti, C.P. Genotoxicity in mice following AAV gene delivery: a safety concern for human gene therapy? Mol. Ther. 24, 198–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Azuma, H. et al. Robust expansion of human hepatocytes in Fah−/−Rag2−/−Il2rg−/− mice. Nat. Biotechnol. 25, 903–910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zanta-Boussif, M.A. et al. Validation of a mutated PRE sequence allowing high and sustained transgene expression while abrogating WHV-X protein synthesis: application to the gene therapy of WAS. Gene Ther. 16, 605–619 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan, I.F., Hirata, R.K. & Russell, D.W. AAV-mediated gene targeting methods for human cells. Nat. Protoc. 6, 482–501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szpirer, C. & Szpirer, J. A mouse hepatoma cell line which secretes several serum proteins including albumin and α-fetoprotein. Differentiation 4, 85–91 (1975).

    Article  CAS  PubMed  Google Scholar 

  49. Edgar, R.C. MUSCLE: multiple-sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McWilliam, H. et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Kel, A.E. et al. MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 31, 3576–3579 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    CAS  PubMed  Google Scholar 

  54. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Quan, A., McCall, M.N. & Sewell, W.A. Dexamethasone inhibits the binding of nuclear factors to the IL5 promoter in human CD4 T cells. J. Allergy Clin. Immunol. 108, 340–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Gorman, C. in DNA Cloning Vol. 1 (ed. Glover, D.M.) 143–165 (IRL Press, Oxford, Washington, D.C., 1985).

  57. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Cunningham, S.C. et al. Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus–piggyBac transposase gene delivery system. Hepatology 62, 417–428 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Latham for assistance in manuscript preparation, M. Grompe (Oregon Stem Cell Center, Oregon Health and Science University) for the FRG mice, J. Laurence (University of Sydney) for the HuH-7 cells, S. Goss (University of Oxford) for the BWTG3 cells and G. Sharbeen (University of New South Wales) for the MiaPaCa2 pancreatic carcinoma cell line. This work was supported by an Australian National Health and Medical Research Council (NHMRC) Postgraduate Research Scholarship (477110; A.P.D.), Children's Medical Research Institute (CMRI) Ph.D. stipends (A.P.D., A.K.A. and M.C.-C.), a University of Sydney International Scholarship (A.K.A.), an Institute of Child Health, London stipend (M.C.-C.) and NHMRC project grants APP1008021 (I.E.A.), APP1022498 (I.E.A.) and APP1080330 (I.E.A.).

Author information

Authors and Affiliations

Authors

Contributions

G.J.L. conceived, designed and performed experiments, analyzed data and wrote the manuscript; A.P.D. conceived and performed experiments; C.V.H. and E.E.W. analyzed data; C.M.S., A.K.A., E.Z., N.K., S.L.G., S.H.Y.L., S.C.C., N.S. and M.C.-C. performed experiments; P.P.L.T. jointly supervised the research; D.W.R. and L.L. conceived experiments; and I.E.A. jointly supervised the research, conceived and designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Ian E Alexander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 3205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logan, G., Dane, A., Hallwirth, C. et al. Identification of liver-specific enhancer–promoter activity in the 3′ untranslated region of the wild-type AAV2 genome. Nat Genet 49, 1267–1273 (2017). https://doi.org/10.1038/ng.3893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3893

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer