Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis

A Corrigendum to this article was published on 01 June 2009

This article has been updated

Abstract

Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5′ UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34–amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 5′ UTR of HR contains a highly conserved upstream ORF.
Figure 2: Initial identification of the 2T>C (no protein produced) U2HR mutation in a large Chinese family with MUHH.
Figure 3: U2HR has an inhibitory effect on translation of the downstream main HR ORF.
Figure 4: Mutations in U2HR abolish its inhibitory effect on HR translation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 28 April 2009

    NOTE: The affiliation of the 24th author, Alessandro Terrinoni, was listed incorrectly. It should read IDI-IRCCS Biochemistry Laboratory c/o Univ. Tor Vergata, 00133 Rome, Italy. The error has been corrected in the HTML and PDF versions of this article.

References

  1. Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Stenn, K.S. & Paus, R. Controls of hair follicle cycling. Physiol. Rev. 81, 449–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Cotsarelis, G. Epithelial stem cells: a folliculocentric view. J. Invest. Dermatol. 126, 1459–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Alonso, L. & Fuchs, E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 17, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Andl, T., Reddy, S.T., Gaddapara, T. & Millar, S.E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Van Mater, D., Kolligs, F.T., Dlugosz, A.A. & Fearon, E.R. Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Potter, G.B. et al. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev. 15, 2687–2701 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beaudoin, G.M. III, Sisk, J.M., Coulombe, P.A. & Thompson, C.C. Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc. Natl. Acad. Sci. USA 102, 14653–14658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson, C.C., Sisk, J.M. & Beaudoin, G.M. III. Hairless and Wnt signaling: allies in epithelial stem cell differentiation. Cell Cycle 5, 1913–1917 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad, W. et al. Alopecia universalis associated with a mutation in the human hairless gene. Science 279, 720–724 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Cichon, S. et al. Cloning, genomic organization, alternative transcripts and mutational analysis of the gene responsible for autosomal recessive universal congenital alopecia. Hum. Mol. Genet. 7, 1671–1679 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Sprecher, E., Bergman, R., Szargel, R., Friedman-Birnbaum, R. & Cohen, N. Identification of a genetic defect in the hairless gene in atrichia with papular lesions: evidence for phenotypic heterogeneity among inherited atrichias. Am. J. Hum. Genet. 64, 1323–1329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Unna, M. Über hypotrichosis congenita hereditaria. Dermatol. Wochenschr. 81, 1167–1178 (1925).

    Google Scholar 

  16. van Steensel, M. et al. The gene for hypotrichosis of Marie Unna maps between D8S258 and D8S298: exclusion of the hr gene by cDNA and genomic sequencing. Am. J. Hum. Genet. 65, 413–419 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sreekumar, G.P., Roberts, J.L., Wong, C.Q., Stenn, K.S. & Parimoo, S. Marie Unna hereditary hypotrichosis gene maps to human chromosome 8p21 near hairless. J. Invest. Dermatol. 114, 595–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Lefevre, P. et al. Linkage of Marie-Unna hypotrichosis locus to chromosome 8p21 and exclusion of 10 genes including the hairless gene by mutation analysis. Eur. J. Hum. Genet. 8, 273–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Cichon, S. et al. A distinct gene close to the hairless locus on chromosome 8p underlies hereditary Marie Unna type hypotrichosis in a German family. Br. J. Dermatol. 143, 811–814 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. He, P.P. et al. Refinement of a locus for Marie Unna hereditary hypotrichosis to a 1.1-cM interval at 8p21.3. Br. J. Dermatol. 150, 837–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Scheper, G.C., van der Knaap, M.S. & Proud, C.G. Translation matters: protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Cazzola, M. & Skoda, R.C. Translational pathophysiology: a novel molecular mechanism of human disease. Blood 95, 3280–3288 (2000).

    CAS  PubMed  Google Scholar 

  23. Wiestner, A., Schlemper, R.J., van der Maas, A.P. & Skoda, R.C. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat. Genet. 18, 49–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, L. et al. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat. Genet. 21, 128–132 (1999).

    Article  PubMed  Google Scholar 

  25. Panteleyev, A.A., Paus, R. & Christiano, A.M. Patterns of hairless (hr) gene expression in mouse hair follicle morphogenesis and cycling. Am. J. Pathol. 157, 1071–1079 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, S. et al. Identification of a novel locus for Marie Unna hereditary hypotrichosis to a 17.5 cM interval at 1p21.1–1q21.3. J. Invest. Dermatol. 125, 711–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Iacono, M., Mignone, F. & Pesole, G. uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene 349, 97–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Churbanov, A., Rogozin, I.B., Babenko, V.N., Ali, H. & Koonin, E.V. Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res. 33, 5512–5520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sachs, M.S. & Geballe, A.P. Downstream control of upstream open reading frames. Genes Dev. 20, 915–921 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Niiyama, S., Freyschmidt-Paul, P., Happle, R. & Hoffmann, R. Hypotrichosis of congenital of Marie Unna. Eur. J. Dermatol. 11, 379–380 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the family members for their participation in the study, and J. Zeller, S. Burge and M. Young for referring patients. This work was supported mainly by the National Natural Science Foundation of China (funds 30730097 and 30721063 to X.Z.). X.Z. is a Chang Jiang Scholar of Genetic Medicine supported by the Ministry of Education, China. C.-D.H. was supported by the National Natural Science Foundation of China (30771948). The McLean laboratory is supported by grants from the Dystrophic Epidermolysis Bullosa Research Association, the Pachyonychia Congenita Project, the British Skin Foundation, the National Eczema Society and the Medical Research Council (G0700314). S.Y. is supported by the Ministry of Education, China (SRFDP 20050366004). The German group is supported by grants from the Deutsche Forschungsgemeinschaft (Research Unit FOR 423 to M.M.N. and R.K. and Emmy Noether Programme to R.C.B.). M.M.N. holds an Alfried Krupp von Bohlen and Halbach-Chair in Genetic Medicine. R.S. and J.G. are supported by Epiderm, the Scientific Research Fund of the Australasian College of Dermatologists and the Scientific Research Fund of the Skin and Cancer Foundation of Victoria.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. designed and oversaw the entire project. X.Z. and C.-D.H. initiated the study. X.Z. and W.H.I.M. coordinated the mutation screening work and prepared the manuscript. Y.W., Y. Liu, Y.Z. and M.v.G. carried out the linkage analysis and mutation screening. Y.X., R.H., K.W. and Y.W. conducted the mRNA and protein expression experiments. X.Z. and Y.W. conducted the bioinformatics analysis. M.S., D.S., Q.L., Y. Luo and L.J. supported the genetic analyses. H.-D.C. and W.H.-Y.L. supported the study design. Y. Liu, S.Y., X.-J.Z., R.K., S.C., R.C.B., M.M.N., M.A.M.v.S., P.M.S., D.H., M.H., G.S.D., C.K., A.M., C.S.M., A.T., A.H., C.B., Y.d.P., A.S.P., A.D.I., R.S. and J.G. were responsible for clinical evaluation and sample collection, including earlier published linkage studies.

Corresponding authors

Correspondence to W H Irwin McLean, Chun-Di He or Xue Zhang.

Ethics declarations

Competing interests

X.Z., C.-D.H., Y.W., Y. Liu, Y.X., R.H., K.W. and M.S. have applied for a patent relating to the U2HR sequence.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 297 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Y., Liu, Y., Xu, Y. et al. Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet 41, 228–233 (2009). https://doi.org/10.1038/ng.276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing