Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues

Abstract

Mammalian development requires cytosine methylation, a heritable epigenetic mark of cellular memory believed to maintain a cell's unique gene expression pattern. However, it remains unclear how dynamic DNA methylation relates to cell type–specific gene expression and animal development. Here, by mapping base-resolution methylomes in 17 adult mouse tissues at shallow coverage, we identify 302,864 tissue-specific differentially methylated regions (tsDMRs) and estimate that >6.7% of the mouse genome is variably methylated. Supporting a prominent role for DNA methylation in gene regulation, most tsDMRs occur at distal cis-regulatory elements. Unexpectedly, some tsDMRs mark enhancers that are dormant in adult tissues but active in embryonic development. These 'vestigial' enhancers are hypomethylated and lack active histone modifications in adult tissues but nevertheless exhibit activity during embryonic development. Our results provide new insights into the role of DNA methylation at tissue-specific enhancers and suggest that epigenetic memory of embryonic development may be retained in adult tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct tissue-specific methylomes.
Figure 2: Identification of tissue-specific methylated regions.
Figure 3: Tissue-specific methylated regions are predominantly regulatory elements.
Figure 4: Tissue-specific conservation of regulatory elements.
Figure 5: Transcription factor binding motif enrichment near tsDMRs.
Figure 6: AD-I tsDMRs demonstrate features of dormant enhancers.
Figure 7: AD-I tsDMRs are active during development.
Figure 8: Vestigial enhancers across development and strains.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Feng, S., Jacobsen, S.E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Bonasio, R., Tu, S. & Reinberg, D. Molecular signals of epigenetic states. Science 330, 612–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okano, M. & Li, E. Genetic analyses of DNA methyltransferase genes in mouse model system. J. Nutr. 132, 2462S–2465S (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Meissner, A. Epigenetic modifications in pluripotent and differentiated cells. Nat. Biotechnol. 28, 1079–1088 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Polo, J.M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ball, M.P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27, 361–368 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hemberger, M., Dean, W. & Reik, W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nat. Rev. Mol. Cell Biol. 10, 526–537 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansen, K.D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ehrlich, M. et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 10, 2709–2721 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Novakovic, B. et al. DNA methylation–mediated down-regulation of DNA methyltransferase-1 (DNMT1) is coincident with, but not essential for, global hypomethylation in human placenta. J. Biol. Chem. 285, 9583–9593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schroeder, D.I. et al. The human placenta methylome. Proc. Natl. Acad. Sci. USA 110, 6037–6042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilbert, S. Developmental Biology (Sinauer Associates, Sunderland, MA, 2000).

  19. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148, 816–831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hon, G.C. et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 22, 246–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berman, B.P. et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina–associated domains. Nat. Genet. 44, 40–46 (2012).

    Article  CAS  Google Scholar 

  23. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome–nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hiratani, I. et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hawkins, R.D. et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell Res. 21, 1393–1409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Creyghton, M.P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reichert, H. Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biol. Lett. 5, 112–116 (2009).

    Article  PubMed  Google Scholar 

  37. Blow, M.J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taberlay, P.C. et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 147, 1283–1294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L.A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Hallonet, M., Hollemann, T., Pieler, T. & Gruss, P. Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev. 13, 3106–3114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muzio, L. et al. Emx2 and Pax6 control regionalization of the pre-neuronogenic cortical primordium. Cereb. Cortex 12, 129–139 (2002).

    Article  PubMed  Google Scholar 

  42. ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  43. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brinkman, A.B. et al. Sequential ChIP–bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bocker, M.T. et al. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117, e182–e189 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feinberg, A.P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  50. Gama-Sosa, M.A. et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 11, 6883–6894 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herman, J.G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  53. Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971–983 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rajagopal, N. et al. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput. Biol. 9, e1002968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyer, L.R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schug, J. et al. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 6, R33 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kuan, Z. Ye and L. Edsall for their assistance in sequencing and the initial processing of sequencing reads. This work is funded by the Ludwig Institute for Cancer Research and the US National Institutes of Health (R01 HG003991 and ES017166).

Author information

Authors and Affiliations

Authors

Contributions

G.C.H., N.R. and F.Y. performed bioinformatics analysis. G.C.H., Y.S., D.F.M. and M.D.D. performed experiments. G.C.H. and B.R. prepared the manuscript.

Corresponding author

Correspondence to Bing Ren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Note (PDF 1743 kb)

Supplementary Table 1

tsDMRs in mouse tissues (XLSX 16827 kb)

Supplementary Table 2

Motif analysis of tsDMRs not recovered by known regulatory elements (XLSX 20 kb)

Supplementary Table 3

AD-A and AD-I tsDMRs in mouse tissues (XLSX 12898 kb)

Supplementary Table 4

Overlap of embryonic enhancers with adult AD-I tsDMRs (XLSX 11 kb)

Supplementary Table 5

Predicted enhancers (XLSX 16979 kb)

Supplementary Table 6

Known motifs used in analysis (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hon, G., Rajagopal, N., Shen, Y. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45, 1198–1206 (2013). https://doi.org/10.1038/ng.2746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing