Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

DNase I–hypersensitive exons colocalize with promoters and distal regulatory elements

Abstract

The precise splicing of genes confers an enormous transcriptional complexity to the human genome. The majority of gene splicing occurs cotranscriptionally, permitting epigenetic modifications to affect splicing outcomes. Here we show that select exonic regions are demarcated within the three-dimensional structure of the human genome. We identify a subset of exons that exhibit DNase I hypersensitivity and are accompanied by 'phantom' signals in chromatin immunoprecipitation and sequencing (ChIP-seq) that result from cross-linking with proximal promoter- or enhancer-bound factors. The capture of structural features by ChIP-seq is confirmed by chromatin interaction analysis that resolves local intragenic loops that fold exons close to cognate promoters while excluding intervening intronic sequences. These interactions of exons with promoters and enhancers are enriched for alternative splicing events, an effect reflected in cell type–specific periexonic DNase I hypersensitivity patterns. Collectively, our results connect local genome topography, chromatin structure and cis-regulatory landscapes with the generation of human transcriptional complexity by cotranscriptional splicing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A subset of exons exhibits DNase I hypersensitivity.
Figure 2: Combined ChIP-seq and ChIA-PET analysis shows that DHS exons interact with promoters and distal regulatory elements.
Figure 3: Schematic of local genome folding of exons within the SPTBN4 gene.
Figure 4: 3C validates cell type–specific interactions between exons and promoters.
Figure 5: Association between DHS exons and cell type–specific alternative splicing.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maniatis, T. & Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Pozzoli, U. et al. Intron size in mammals: complexity comes to terms with economy. Trends Genet. 23, 20–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Luco, R.F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, S., Kim, H., Fong, N., Erickson, B. & Bentley, D.L. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc. Natl. Acad. Sci. USA 108, 13564–13569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrillo Oesterreich, F., Bieberstein, N. & Neugebauer, K.M. Pause locally, splice globally. Trends Cell Biol. 21, 328–335 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schoenfelder, S., Clay, I. & Fraser, P. The transcriptional interactome: gene expression in 3D. Curr. Opin. Genet. Dev. 20, 127–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Tan-Wong, S.M., French, J.D., Proudfoot, N.J. & Brown, M.A. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc. Natl. Acad. Sci. USA 105, 5160–5165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, L. et al. ncRNA- and Pc2 methylation–dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sabo, P.J. et al. Discovery of functional noncoding elements by digital analysis of chromatin structure. Proc. Natl. Acad. Sci. USA 101, 16837–16842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Nahkuri, S., Taft, R.J. & Mattick, J.S. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 8, 3420–3424 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Gerstein, M.B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fullwood, M.J. et al. An oestrogen-receptor-α–bound human chromatin interactome. Nature 462, 58–64 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  24. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheutin, T. & Cavalli, G. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. PLoS Genet. 8, e1002465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kassouf, M.T. et al. Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res. 20, 1064–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chepelev, I., Wei, G., Wangsa, D., Tang, Q. & Zhao, K. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res. 22, 490–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohlsson, R., Lobanenkov, V. & Klenova, E. Does CTCF mediate between nuclear organization and gene expression? Bioessays 32, 37–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630–638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saint-André, V., Batsche, E., Rachez, C. & Muchardt, C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 18, 337–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Pradeepa, M.M., Sutherland, H.G., Ule, J., Grimes, G.R. & Bickmore, W.A. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 8, e1002717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhatt, D.M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol. 7 (suppl. 1), S4.1–S4.9 (2006).

    Google Scholar 

  36. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008–2017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cramer, P., Pesce, C.G., Baralle, F.E. & Kornblihtt, A.R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl. Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kornblihtt, A.R. Promoter usage and alternative splicing. Curr. Opin. Cell Biol. 17, 262–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz, S. & Ast, G. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J. 29, 1629–1636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Razin, S.V. et al. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res. 39, 9085–9092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mao, Y.S., Zhang, B. & Spector, D.L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melnik, S. et al. The proteomes of transcription factories containing RNA polymerases I, II or III. Nat. Methods 8, 963–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edelman, L.B. & Fraser, P. Transcription factories: genetic programming in three dimensions. Curr. Opin. Genet. Dev. 22, 110–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Allemand, E., Batsche, E. & Muchardt, C. Splicing, transcription, and chromatin: a menage a trois. Curr. Opin. Genet. Dev. 18, 145–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Moldón, A. et al. Promoter-driven splicing regulation in fission yeast. Nature 455, 997–1000 (2008).

    Article  PubMed  CAS  Google Scholar 

  48. Gerstein, M.B. et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kapranov, P., Willingham, A.T. & Gingeras, T.R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Mercer, T.R. et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat. Biotechnol. 30, 99–104 (2012).

    Article  CAS  Google Scholar 

  51. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Derrien, T. et al. Fast computation and applications of genome mappability. PLoS ONE 7, e30377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, G. et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. ENCODE Project Consortium. User's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  55. Sabo, P.J. et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat. Methods 3, 511–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Grant, C.E., Bailey, T.L. & Noble, W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan-Wong, S.M., Wijayatilake, H.D. & Proudfoot, N.J. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 23, 2610–2624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following funding sources: the Australian National Health and Medical Research Council (Australia Fellowships 631668 to J.S.M., T.R.M. and M.B.C. and 631381 and 1021731 to S.L.E.); the Queensland State Government (National and International Research Alliance Program to L.K.N.); the National Breast Cancer Foundation Australia (to S.L.E.); the National Human Genome Research Institute (NHGRI; ENCODE grant HG004456 to Y.R., G.L. and K.S.S.); and the US National Institutes of Health (NHGRI ENCODE grants U54HG004592 and U54HG007599 to J.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.R.M., G.L. and S.J.N. performed bioinformatic analysis. S.L.E. performed 3C analysis. G.L., K.S.S. and Y.R. performed ChIA-PET analysis. A.B.S., H.W., S.J. and R.S. performed native ChIP-seq and whole-genome sequencing. T.R.M., S.J.N., M.B.C., L.K.N., Y.R., J.S.M. and J.A.S. prepared the manuscript.

Corresponding authors

Correspondence to John S Mattick or John A Stamatoyannopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 1729 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercer, T., Edwards, S., Clark, M. et al. DNase I–hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet 45, 852–859 (2013). https://doi.org/10.1038/ng.2677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing