Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale genotyping identifies 41 new loci associated with breast cancer risk

Abstract

Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for 9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-degree-of-freedom trend-test statistics for 29,807 iCOGS SNPs selected from the combined GWAS, excluding those occurring in known susceptibility regions.
Figure 2: Distribution of normalized effect sizes (z scores) in the iCOGS stage, with the direction of effect determined by the direction in the combined GWAS.

Similar content being viewed by others

References

  1. Kamangar, F., Dores, G.M. & Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24, 2137–2150 (2006).

    Article  PubMed  Google Scholar 

  2. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Peto, J. & Mack, T.M. High constant incidence in twins and other relatives of women with breast cancer. Nat. Genet. 26, 411–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stacey, S.N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer. Nat. Genet. 39, 865–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Stacey, S.N. et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer. Nat. Genet. 40, 703–706 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed, S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng, W. et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 41, 324–328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas, G. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Genet. 41, 579–584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Antoniou, A.C. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nat. Genet. 42, 885–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fletcher, O. et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl. Cancer Inst. 103, 425–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Haiman, C.A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nat. Genet. 43, 1210–1214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghoussaini, M. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat. Genet. 44, 312–318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siddiq, A. et al. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum. Mol. Genet. 21, 5373–5384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eeles, R.A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. published online; doi:10.1038/ng.2560 (27 March 2013).

    Article  CAS  PubMed  Google Scholar 

  18. Pharoah, P.D.P. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. published online; doi:10.1038/ng.2564 (27 March 2013).

    Article  CAS  PubMed  Google Scholar 

  19. Couch, F.J. et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet. 9, e1003212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaudet, M.M. et al. Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. PLoS Genet. 9, e1003173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cox, A. et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat. Genet. 39, 352–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambrechts, D. et al. 11q13 is a susceptibility locus for hormone receptor positive breast cancer. Hum. Mutat. 33, 1123–1132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stevens, K.N. et al. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res. 72, 1795–1803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antoniou, A.C. & Easton, D.F. Polygenic inheritance of breast cancer: implications for design of association studies. Genet. Epidemiol. 25, 190–202 (2003).

    Article  PubMed  Google Scholar 

  26. Figueroa, J.D. et al. Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. Hum. Mol. Genet. 20, 4693–4706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazoyer, S. et al. A polymorphic stop codon in BRCA2. Nat. Genet. 14, 253–254 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Schutte, M. et al. Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am. J. Hum. Genet. 72, 1023–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hemphill, A.W. et al. Mammalian SNM1 is required for genome stability. Mol. Genet. Metab. 94, 38–45 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scollen, S. et al. TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol. Biomarkers Prev. 20, 1112–1119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, X. et al. Pathway analyses identify TGFBR2 as potential breast cancer susceptibility gene: results from a consortium study among Asians. Cancer Epidemiol. Biomarkers Prev. 21, 1176–1184 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Burwinkel, B. et al. Transcription factor 7–like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case-control study. BMC Cancer 6, 268 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goode, E.L. et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat. Genet. 42, 874–879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eeles, R.A. et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 41, 1116–1121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, T.P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimozawa, N. et al. Identification of a new complementation group of the peroxisome biogenesis disorders and PEX14 as the mutated gene. Hum. Mutat. 23, 552–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Murfuni, I. et al. The WRN and MUS81 proteins limit cell death and genome instability following oncogene activation. Oncogene 32, 610–620 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Pamidi, A. et al. Functional interplay of p53 and Mus81 in DNA damage responses and cancer. Cancer Res. 67, 8527–8535 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Leong, S., McKay, M.J., Christopherson, R.I. & Baxter, R.C. Biomarkers of breast cancer apoptosis induced by chemotherapy and TRAIL. J. Proteome Res. 11, 1240–1250 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, W. et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J. Cell Biol. 173, 395–404 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunbar, M.E., Wysolmerski, J.J. & Broadus, A.E. Parathyroid hormone–related protein: from hypercalcemia of malignancy to developmental regulatory molecule. Am. J. Med. Sci. 312, 287–294 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Dunbar, M.E. et al. Stromal cells are critical targets in the regulation of mammary ductal morphogenesis by parathyroid hormone–related protein. Dev. Biol. 203, 75–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Qiao, Y. et al. FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res. 71, 3076–3086 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kaneda, H. et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res. 70, 2053–2063 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Debily, M.A. et al. Expression and molecular characterization of alternative transcripts of the ARHGEF5/TIM oncogene specific for human breast cancer. Hum. Mol. Genet. 13, 323–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Muehlich, S. et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene 31, 3913–3923 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grant, S.F. et al. Variant of transcription factor 7–like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Jingushi, K. et al. DIF-1 inhibits the Wnt/β-catenin signaling pathway by inhibiting TCF7L2 expression in colon cancer cell lines. Biochem. Pharmacol. 83, 47–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Dantuma, N.P., Heinen, C. & Hoogstraten, D. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst.) 8, 449–460 (2009).

    Article  CAS  Google Scholar 

  52. Lee, J.C. et al. Pax9 mediated cell survival in oral squamous carcinoma cell enhanced by c-myb. Cell Biochem. Funct. 26, 892–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Castro, P., Liang, H., Liang, J.C. & Nagarajan, L. A novel, evolutionarily conserved gene family with putative sequence-specific single-stranded DNA-binding activity. Genomics 80, 78–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez-Cespedes, M. et al. Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res. 61, 1309–1313 (2001).

    CAS  PubMed  Google Scholar 

  55. Nakamura, T. et al. Molecular cloning and characterization of Kremen, a novel kringle-containing transmembrane protein. Biochim. Biophys. Acta 1518, 63–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura, T., Nakamura, T. & Matsumoto, K. The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology. J. Cell Mol. Med. 12, 391–408 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Esseghir, S. et al. Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin. Cancer Res. 13, 3164–3173 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahmadiyeh, N. et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl. Acad. Sci. USA 107, 9742–9746 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Purcell, S.M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. French, J.D. et al. Functional variants at the 11q13 risk locus regulate cyclin D1 expression through long-range enhancers. Am. J. Hum. Genet. published online; 10.1016/j.ajhg.2013.01.002 (27 March 2013).

  62. Bojesen, S.E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. published online; doi:10.1038/ng.2566 (27 March 2013).

    Article  CAS  PubMed  Google Scholar 

  63. Aulchenko, Y.S., Struchalin, M.V. & van Duijn, C.M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Teo, Y.Y. et al. A genotype calling algorithm for the Illumina BeadArray platform. Bioinformatics 23, 2741–2746 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Giannoulatou, E., Yau, C., Colella, S., Ragoussis, J. & Holmes, C.C. GenoSNP: a variational Bayes within-sample SNP genotyping algorithm that does not require a reference population. Bioinformatics 24, 2209–2214 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Haldane, J.B.S. An exact test for randomness of mating. J. Genet. 52, 631–635 (1954).

    Article  Google Scholar 

  68. Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. BCAC is funded by Cancer Research UK (C1287/A10118 and C1287/A12014) and by the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS). Meetings of BCAC have been funded by the European Union European Cooperation in Science and Technology (COST) programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (grant PSR-SIIRI-701). Combining the GWAS data was supported in part by the US National Institutes of Health (NIH) Cancer Post-Cancer GWAS initiative grant 1 U19 CA 148065-01 (DRIVE, part of the GAME-ON initiative). A full description of funding and acknowledgments is provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

K. Michailidou and D.F.E. performed the statistical analysis and drafted the manuscript. D.F.E. conceived and coordinated the synthesis of the iCOGS array and led BCAC. P.H. coordinated COGS. J. Benitez led the iCOGS genotyping working group. A.G.-N., G.P., M.R.A., J. Benitez, D.V., F.B., D.C.T., J. Simard, A.M.D. and C.L. coordinated genotyping of the iCOGS array. M.G.-C., P.D.P.P. and M.K.S. led the BCAC pathology and survival working group. J.C.-C. led the BCAC risk factor working group. A.M.D. and G.C.-T. led the iCOGS quality control working group. J.D., E.D., M. Ghoussaini and A. Lee provided bioinformatics support. M.K.B. and Q. Wang provided data management support for BCAC. S.C. and L.F.A.W. provided analysis of the TCGA expression data. C.T., N.R. and D.F.E. led the UK2 GWAS. O.F., J.P. and I.d.S.S. led the BBCS GWAS. H.N., T.A.M., K. Aittomäki and C.B. led the HEBCS GWAS. P.H., K.C., A.I. and J. Liu led the SASBAC GWAS. Q. Waisfisz, H.M.-H., M.A. and R.B.v.d.L. led the DFBBCS GWAS. J.C.-C., R.H., N.D. and L. Beckman led the MARIE GWAS. A. Meindl, R.K.S., B.M.-M. and P.L. led the GC-HBOC GWAS. J.L.H., M.C.S., E.M., D.F.S. and H.T. led the ABCFS GWAS. A.G.U. and A. Hofman led the genotyping in the Rotterdam study. D.J.H. and S.J.C. led the CGEMS GWAS. F.J.C. and S. Slager coordinated TNBCC. C.A.H., B.E.H., F.S. and L.L.M. coordinated MEC. P.D.P.P., D.F.E. and M. Shah coordinated SEARCH. R.L. coordinated EPIC-Norfolk. J. Brown coordinated SIBS. P.H., K.C., N.S., K.H. and J. Li coordinated SASBAC and pKARMA. S.E.B., B.G.N., S.F.N. and H.F. coordinated CGPS. F.J.C., X.W., C.V. and K.N.S. coordinated MCBCS. D.L., M.M., R.P. and M.-R.C. coordinated LMBC. J.C.-C., A.R., S.N. and D.F.-J. coordinated MARIE. N.J., L.G. and Z.A. coordinated BBCS. K. Aaltonen and T.H. coordinated HEBCS. M.K.S., A.B., L.J.V.t.V. and C.E.v.d.S. coordinated ABCS. P.G., T.T., P.L.-P. and F. Menegaux coordinated CECILE. F. Marme, A. Schneeweiss, C. Sohn and B. Burwinkel coordinated BSUCH. R.L.M., A.G.-N., M.P.Z., J.I.A.P. and J. Benitez coordinated CNIO-BCS. A.C., I.W.B., S.S.C. and M.W.R.R. coordinated SBCS. E.J.S., I.T., M.J.K. and N.M. coordinated BIGGS. I.L.A., J.A.K., G.G. and A.M.M. coordinated OFBCR. A. Lindblom and S. Margolin coordinated KARBAC. M.J.H., A. Hollestelle, A.M.W.v.d.O. and A. Jager coordinated RBCS. J.L.H., M.C.S., Q.M.B., J. Stone, G.S.D. and C.A. coordinated ABCFS. J.L.H., M.C.S., G.G.G., G.S. and L. Baglietto coordinated MCCS. P.A.F., L.H., A.B.E. and M.W.B. coordinated BBCC. H. Brenner, H. Müller, V.A. and C. Stegmaier coordinated ESTHER. A. Swerdlow, A.A., N.O., M.J. and M.G.-C. coordinated UKBGS. M.G.-C., J.F., J. Lissowska and L. Brinton coordinated PBCS. M.S.G., F.L., M.D. and J. Simard coordinated MTLGEBCS. R.W., K.P., A.J.-V. and M. Grip coordinated OBCS. H. Brauch, U.H. and T.B. coordinated GENICA. P.R., P.P., S. Manoukian and B. Bonanni coordinated MBCSG. P.D., R.A.E.M.T., C. Seynaeve and C.J.v.A. coordinated ORIGO. A. Jakubowska, J. Lubinski, K.J. and K.D. coordinated SZBCS. A. Mannermaa, V.K., V.-M.K. and J.M.H. coordinated KBCP. N.V.B., N.N.A. and T.D. coordinated HMBCS. V.N.K. coordinated NBCS. H.A.-C. coordinated UCIBCS. A.E.T. coordinated OSU. S.E. coordinated RPCI. F.F. coordinated DEMOKRITOS. D.K., K.-Y.Y. and D.-Y.N. coordinated SEBCS. K. Matsuo, H. Ito, H. Iwata and A. Sueta coordinated HERPACC. A.H.W., C.-C.T., D.V.D.B. and D.O.S. coordinated LAABC. W.Z., X.-O.S., W.L., Y.-T.G. and H.C. coordinated SGBCS. S.H.T., C.H.Y., S.Y.P. and B.K.C. coordinated MYBRCA. M.H., H. Miao, W.Y.L. and J.-H.S. coordinated SGBCC. K. Muir, A. Lophatananon, S.S.-B. and P.S. coordinated ACP. C.-Y.S., C.-N.H., P.-E.W. and S.-L.D. coordinated TWBCS. S. Sangrajrang, V.G., P.B. and J.M. coordinated TBCS. W.J.B., L.B.S., Q.C. and W.Z. coordinated SCCS. W.Z., S.D.-H., M. Shrubsole and J. Long coordinated NBHS. G.C.-T. coordinated the genotyping component of kConFab. All authors provided critical review of the manuscript.

Corresponding authors

Correspondence to Per Hall or Douglas F Easton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A list of members is provided in the Supplementary Note.

A list of members is provided in the Supplementary Note.

A list of members is provided in the Supplementary Note.

A list of members is provided in the Supplementary Note.

A list of members is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–8 and Supplementary Note (PDF 2660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michailidou, K., Hall, P., Gonzalez-Neira, A. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45, 353–361 (2013). https://doi.org/10.1038/ng.2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2563

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer