Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

Abstract

Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features1,2,3,4,5. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Craniofacial appearance and magnetic resonance imaging (MRI) of the three index subjects.
Figure 2: PIP3 levels in lymphoblastoid cell lines derived from an unaffected control (WT), an individual with Cowden disease (GM10080) and four individuals with megalencephaly.
Figure 3: Distribution of alterations in AKT3, PIK3R2 and PIK3CA.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Clayton-Smith, J. et al. Macrocephaly with cutis marmorata, haemangioma and syndactyly—a distinctive overgrowth syndrome. Clin. Dysmorphol. 6, 291–302 (1997).

    Article  CAS  Google Scholar 

  2. Mirzaa, G. et al. Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus: a rare brain malformation syndrome associated with mental retardation and seizures. Neuropediatrics 35, 353–359 (2004).

    Article  CAS  Google Scholar 

  3. Moore, C.A. et al. Macrocephaly-cutis marmorata telangiectatica congenita: a distinct disorder with developmental delay and connective tissue abnormalities. Am. J. Med. Genet. 70, 67–73 (1997).

    Article  CAS  Google Scholar 

  4. Mirzaa, G.M. et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am. J. Med. Genet. A. 158A, 269–291 (2012).

    Article  Google Scholar 

  5. Conway, R.L. et al. Neuroimaging findings in macrocephaly-capillary malformation: a longitudinal study of 17 patients. Am. J. Med. Genet. A. 143A, 2981–3008 (2007).

    Article  Google Scholar 

  6. Oduber, C.E. et al. A proposal for classification of entities combining vascular malformations and deregulated growth. Eur. J. Med. Genet. 54, 262–271 (2011).

    Article  Google Scholar 

  7. Happle, R. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J. Am. Acad. Dermatol. 16, 899–906 (1987).

    Article  CAS  Google Scholar 

  8. Gripp, K.W. et al. Significant overlap and possible identity of macrocephaly capillary malformation and megalencephaly polymicrogyria-polydactyly hydrocephalus syndromes. Am. J. Med. Genet. A. 149A, 868–876 (2009).

    Article  Google Scholar 

  9. Brodbeck, D., Cron, P. & Hemmings, B.A. A human protein kinase Bγ with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J. Biol. Chem. 274, 9133–9136 (1999).

    Article  CAS  Google Scholar 

  10. Hers, I., Vincent, E.E. & Tavare, J.M. Akt signalling in health and disease. Cell. Signal. 23, 1515–1527 (2011).

    Article  CAS  Google Scholar 

  11. Otsu, M. et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65, 91–104 (1991).

    Article  CAS  Google Scholar 

  12. Scarano, E., Iaccarino, M., Grippo, P. & Parisi, E. The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc. Natl. Acad. Sci. USA 57, 1394–1400 (1967).

    Article  CAS  Google Scholar 

  13. Lindhurst, M.J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011).

    Article  CAS  Google Scholar 

  14. Volinia, S. et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110α (PIK3CA) gene. Genomics 24, 472–477 (1994).

    Article  CAS  Google Scholar 

  15. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  16. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  Google Scholar 

  17. Engelman, J.A., Luo, J. & Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).

    Article  CAS  Google Scholar 

  18. Mora, A., Komander, D., van Aalten, D.M. & Alessi, D.R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 15, 161–170 (2004).

    Article  CAS  Google Scholar 

  19. Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).

    Article  CAS  Google Scholar 

  20. Samuels, Y. & Ericson, K. Oncogenic PI3K and its role in cancer. Curr. Opin. Oncol. 18, 77–82 (2006).

    Article  CAS  Google Scholar 

  21. Sansal, I. & Sellers, W.R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).

    Article  CAS  Google Scholar 

  22. Cho, H. et al. Insulin resistance and a diabetes mellitus–like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    Article  CAS  Google Scholar 

  23. Cho, H., Thorvaldsen, J.L., Chu, Q., Feng, F. & Birnbaum, M.J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–38352 (2001).

    Article  CAS  Google Scholar 

  24. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2 . Science 304, 1325–1328 (2004).

    Article  CAS  Google Scholar 

  25. Hussain, K. et al. An activating mutation of AKT2 and human hypoglycemia. Science 334, 474 (2011).

    Article  CAS  Google Scholar 

  26. Ballif, B.C. et al. High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum. Genet. 131, 145–156 (2012).

    Article  CAS  Google Scholar 

  27. Boland, E. et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am. J. Hum. Genet. 81, 292–303 (2007).

    Article  CAS  Google Scholar 

  28. Tschopp, O. et al. Essential role of protein kinase Bγ (PKBγ/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132, 2943–2954 (2005).

    Article  CAS  Google Scholar 

  29. Tokuda, S. et al. A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice. Hum. Mol. Genet. 20, 988–999 (2011).

    Article  CAS  Google Scholar 

  30. Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41–48 (2012).

    Article  CAS  Google Scholar 

  31. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  32. Cheung, L.W. et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1, 170–185 (2011).

    Article  CAS  Google Scholar 

  33. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  Google Scholar 

  34. Thomas, R.K. et al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 39, 347–351 (2007).

    Article  CAS  Google Scholar 

  35. Jaiswal, B.S. et al. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell 16, 463–474 (2009).

    Article  CAS  Google Scholar 

  36. Gymnopoulos, M., Elsliger, M.A. & Vogt, P.K. Rare cancer-specific mutations in PIK3CA show gain of function. Proc. Natl. Acad. Sci. USA 104, 5569–5574 (2007).

    Article  CAS  Google Scholar 

  37. Ikenoue, T. et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 65, 4562–4567 (2005).

    Article  CAS  Google Scholar 

  38. Oda, K. et al. PIK3CA cooperates with other phosphatidylinositol 3′-kinase pathway mutations to effect oncogenic transformation. Cancer Res. 68, 8127–8136 (2008).

    Article  CAS  Google Scholar 

  39. Butler, M.G. et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42, 318–321 (2005).

    Article  CAS  Google Scholar 

  40. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  41. Marsh, D.J. et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7, 507–515 (1998).

    Article  CAS  Google Scholar 

  42. Kong, D. & Yamori, T. Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci. 99, 1734–1740 (2008).

    Article  CAS  Google Scholar 

  43. Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M.P. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta 1784, 159–185 (2008).

    Article  CAS  Google Scholar 

  44. Riviere, J.B. et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat. Genet. 44, 440–444, S1–2 (2012).

    Article  CAS  Google Scholar 

  45. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  Google Scholar 

  46. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  47. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  48. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  49. O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  Google Scholar 

  50. Cooper, G.M. et al. Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat. Methods 7, 250–251 (2010).

    Article  CAS  Google Scholar 

  51. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    Article  CAS  Google Scholar 

  52. Brownstein, M.J., Carpten, J.D. & Smith, J.R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20, 1004–1006, 1008–1010 (1996).

    Article  CAS  Google Scholar 

  53. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all of the children and families in this study, their referring physicians and the M-CM Network (see URLs) for their help with this project over many years. We thank the members of the Northwest Genomics Center and the McGill University and Genome Quebec Innovation Centre for their excellent technical assistance. We also thank the Finding of Rare Disease Genes (FORGE) Canada Consortium, especially J. Marcadier for her contribution to the infrastructure.

This work was funded by the US National Institutes of Health under National Institute of Neurological Disorders and Stroke (NINDS) grant NS058721 (to W.B.D.), National Institute of Child Health & Human Development (NICHD) grant HD36657 and National Institute of General Medical Sciences (NIGMS) grant 5-T32-GM08243 (to J.M.G.), the Government of Canada (to FORGE) through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049). Additional funding was provided to FORGE by Genome Quebec and Genome British Columbia. J.-B.R. is supported by a Banting Postdoctoral Fellowship from the CIHR. K.M.B. is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. The laboratory of M.O. is funded by Cancer Research UK (CR-UK), the Medical Research Council (UK) and Leukaemia Lymphoma Research (UK). M.O. is a Senior CR-UK Research Fellow.

We would like to thank the Simons Foundation Autism Research Initiative (SFARI) for providing control exome data (grant 191889 to J.S.). We also thank the NIEHS Environmental Genome Project (contract HHSN273200800010C) and the NHLBI GO Exome Sequencing Project and its ongoing studies—Lung GO (HL-102923), Broad GO (HL-102925), Seattle GO (HL-102926), Heart GO (HL-103010) and the Women's Health Institute (WHI; HL-102924) Sequencing Projects—for providing exome variant calls for comparison.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.-B.R., G.M.M., K.M.B. and W.B.D. designed the study. J.-B.R., B.J.O. and J.S.-O. designed and performed the genetics experiments. M.B., T.W., C.T.S. and T.R.W. contributed to the genetics experiments. J.-B.R., J.A.S. and B.J.O. performed the bioinformatics experiments. D.A. performed the experiments in lymphoblastoid cell lines. G.M.M., R.L.C., K.W.G., S.M.N., B.A., C.M.A., L.A., O.C., C.C., B.A.D., A.M.I., J.L.L., A.E.L., G.M.S.M., W.S.M., J.D.R., A.K.S., T.L.-S., G.U., R.W., B.Z., J.M.G., K.M.B. and W.B.D. recruited and evaluated the study subjects. H.E.B., N.A.K. and C.L.B. provided administrative support and recruited the study subjects. J.M., D.E.B., M.O., J.S., K.M.B. and W.B.D. supervised the study. J.-B.R., G.M.M. and W.B.D. wrote the manuscript.

Corresponding author

Correspondence to William B Dobyns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Membership of the Steering Committee for the Consortium is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–12 and Supplementary Note (PDF 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, JB., Mirzaa, G., O'Roak, B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44, 934–940 (2012). https://doi.org/10.1038/ng.2331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing