Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint

Abstract

Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope and longevity of dsRNA-targeted chromatin effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of histone H3 lysine 9 trimethylation (H3K9me3), with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from the other 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9me3, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3K9me3 profiles triggered by gene-specific dsRNAs.
Figure 2: H3K9me3 profiles triggered by dsRNAs that target different sections of the smg-1 locus.
Figure 3: Small RNA coverage profiles at the smg-1 locus after exposure to smg-1 dsRNA in various genetic backgrounds.
Figure 4: Multigenerational analyses of H3K9me3 and siRNAs at the RNAi target locus.
Figure 5: Time lag between initial dsRNA exposure and chromatin and siRNA responses.
Figure 6: A working model for dsRNA-triggered H3K9 methylation in C. elegans.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Kennerdell, J.R. & Carthew, R.W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tuschl, T., Zamore, P.D., Lehmann, R., Bartel, D.P. & Sharp, P.A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Saito, K. & Siomi, M.C. Small RNA-mediated quiescence of transposable elements in animals. Dev. Cell 19, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Claycomb, J.M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Batista, P.J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gent, J.I. et al. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol. Cell 37, 679–689 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maniar, J.M. & Fire, A.Z. EGO-1, a C. elegans RdRP, modulates gene expression via production of mRNA-templated short antisense RNAs. Curr. Biol. 21, 449–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H.L. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Matzke, M.A., Primig, M., Trnovsky, J. & Matzke, A.J. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8, 643–649 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wassenegger, M. RNA-directed DNA methylation. Plant Mol. Biol. 43, 203–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Herr, A.J. & Baulcombe, D.C. RNA silencing pathways in plants. Cold Spring Harb. Symp. Quant. Biol. 69, 363–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Grewal, S.I. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20, 134–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mellone, B.G. et al. Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr. Biol. 13, 1748–1757 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Snowden, A.W., Gregory, P.D., Case, C.C. & Pabo, C.O. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 12, 2159–2166 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bühler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  PubMed  Google Scholar 

  28. Simmer, F. et al. Hairpin RNA induces secondary small interfering RNA synthesis and silencing in trans in fission yeast. EMBO Rep. 11, 112–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Iida, T., Nakayama, J. & Moazed, D. siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. Mol. Cell 31, 178–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aronica, L. et al. Study of an RNA helicase implicates small RNA–noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev. 22, 2228–2241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malone, C.D., Anderson, A.M., Motl, J.A., Rexer, C.H. & Chalker, D.L. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol. Cell. Biol. 25, 9151–9164 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nowacki, M. et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451, 153–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Deshpande, G., Calhoun, G. & Schedl, P. Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes Dev. 19, 1680–1685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells (Retraction). Nature 441, 1176 (2006).

    Article  PubMed  Google Scholar 

  38. Weinberg, M.S., Barichievy, S., Schaffer, L., Han, J. & Morris, K.V. An RNA targeted to the HIV-1 LTR promoter modulates indiscriminate off-target gene activation. Nucleic Acids Res. 35, 7303–7312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA–induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Weinberg, M.S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Tabara, H., Grishok, A. & Mello, C.C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guang, S. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321, 537–541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Montgomery, M.K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA–mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grishok, A., Sinskey, J.L. & Sharp, P.A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 19, 683–696 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gu, S.G. & Fire, A. Partitioning the C. elegans genome by nucleosome modification, occupancy, and positioning. Chromosoma 119, 73–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dufourcq, P. et al. lir-2, lir-1 and lin-26 encode a new class of zinc-finger proteins and are organized in two overlapping operons both in Caenorhabditis elegans and in Caenorhabditis briggsae. Genetics 152, 221–235 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Hodgkin, J., Papp, A., Pulak, R., Ambros, V. & Anderson, P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301–313 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Alcazar, R.M., Lin, R. & Fire, A.Z. Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180, 1275–1288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Grishok, A., Tabara, H. & Mello, C.C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Vastenhouw, N.L. et al. Gene expression: long-term gene silencing by RNAi. Nature 442, 882 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D.C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Tabara, H., Yigit, E., Siomi, H. & Mello, C.C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Austin, J. & Kimble, J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589–599 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Beanan, M.J. & Strome, S. Characterization of a germ-line proliferation mutation in C. elegans. Development 116, 755–766 (1992).

    CAS  PubMed  Google Scholar 

  66. Harris, T.W. et al. WormBase: a comprehensive resource for nematode research. Nucleic Acids Res. 38, D463–D467 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gent, J.I. et al. A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 183, 1297–1314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Z. Weng, P. Lacroute, A. Sidow, H. Zhang, J. Merker, D. Wu, K. Artiles, L. Gracey, A. Lamm, C. Mello, M. Stadler, R. Alcazar and J. Ni for help, suggestions and support. Funding for this study was provided by a grant from the US National Institutes of Health (R01-GM37706).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived in discussions among all authors. Experiments and data analyses for Figure 1 were performed by S.G.G., J.P., J.M.M., S.G., S.K. and A.F. Experiments and data analyses for Figures 2, 3, 4 and 5 were performed by S.G.G., J.P. and A.F. Overall discussions of the data and implications involved all authors, and the manuscript was written by S.G.G. and A.F.

Corresponding author

Correspondence to Andrew Fire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, S., Pak, J., Guang, S. et al. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 44, 157–164 (2012). https://doi.org/10.1038/ng.1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing