Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peak growing season gross uptake of carbon in North America is largest in the Midwest USA

Abstract

Gross primary production (GPP) is a first-order uncertainty in climate predictions. Large-scale CO2 observations can provide information about the carbon cycle, but are not directly useful for GPP. Recently carbonyl sulfide (COS or OCS) has been proposed as a potential tracer for regional and global GPP. Here we present the first regional assessment of GPP using COS. We focus on the North American growing season—a global hotspot for COS air-monitoring and GPP uncertainty. Regional variability in simulated vertical COS concentration gradients was driven by variation in GPP rather than other modelled COS sources and sinks. Consequently we are able to show that growing season GPP in the Midwest USA significantly exceeds that of any other region of North America. These results are inconsistent with some ecosystem models, but are supportive of new ecosystem models from CMIP6. This approach provides valuable insight into the accuracy of various ecosystem land models.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key differences among GPP models.
Figure 2: Key locations of modelling setup.
Figure 3: Simulated COS mean drawdown and 95% confidence intervals for individual COS flux components.
Figure 4: Simulated mean COS drawdown and confidence intervals for sum of all considered COS fluxes.

Similar content being viewed by others

References

  1. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Article  CAS  Google Scholar 

  3. Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    Article  CAS  Google Scholar 

  4. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the C4 MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  5. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  6. Huntzinger, D. et al. North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecol. Model. 232, 144–157 (2012).

    Article  CAS  Google Scholar 

  7. Hilton, T. W., Davis, K. J. & Keller, K. Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals. Biogeosciences 11, 217–235 (2014).

    Article  CAS  Google Scholar 

  8. Schaefer, K. et al. A model-data comparison of gross primary productivity. J. Geophys. Res. 117, G03010 (2012).

    Article  Google Scholar 

  9. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

    Article  Google Scholar 

  10. Miles, N. L. et al. Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the US Upper Midwest. J. Geophys. Res. 117, G01019 (2012).

    Article  CAS  Google Scholar 

  11. Schuh, A. E. et al. Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural landscape. Glob. Change Biol. 19, 1424–1439 (2013).

    Article  Google Scholar 

  12. Montzka, S. A. et al. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2 . J. Geophys. Res. 112, D09302 (2007).

    Article  CAS  Google Scholar 

  13. Campbell, J. E. et al. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322, 1085–1088 (2008).

    Article  CAS  Google Scholar 

  14. Suntharalingam, P., Kettle, A. J., Montzka, S. M. & Jacob, D. J. Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: implications for terrestrial vegetation uptake. Geophys. Res. Lett. 35, L19801 (2008).

    Article  CAS  Google Scholar 

  15. Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y. & Yakir, D. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol. 186, 869–878 (2010).

    Article  CAS  Google Scholar 

  16. Maseyk, K. et al. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains. Proc. Natl Acad. Sci. USA 111, 9064–9069 (2014).

    Article  CAS  Google Scholar 

  17. Commane, R. et al. Seasonal fluxes of carbonyl sulfide in a midlatitude forest. Proc. Natl Acad. Sci. USA 112, 14162–14167 (2015).

    Article  CAS  Google Scholar 

  18. Berry, J. et al. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. 118, 842–852 (2013).

    Article  CAS  Google Scholar 

  19. Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  20. Guanter, L. et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from {GOSAT} space measurements. Remote Sens. Environ. 121, 236–251 (2012).

    Article  Google Scholar 

  21. Huete, A., Justice, C. & van Leeuwen, W. MODIS Vegetation Index (MOD 13) Algorithm Theoretical Basis Document, Version 3 (1999); http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf

  22. Launois, T., Peylin, P., Belviso, S. & Poulter, B. A new model of the global biogeochemical cycle of carbonyl sulfide—Part 2: use of carbonyl sulfide to constrain gross primary productivity in current vegetation models. Atmos. Chem. Phys. 15, 9285–9312 (2015).

    Article  CAS  Google Scholar 

  23. Stimler, K., Berry, J. A., Montzka, S. A. & Yakir, D. Association between carbonyl sulfide uptake and 18Δ during gas exchange in C3 and C4 leaves. Plant Physiol. 157, 509–517 (2011).

    Article  CAS  Google Scholar 

  24. Hilton, T. W. et al. Large variability in ecosystem models explains uncertainty in a critical parameter for quantifying GPP with carbonyl sulphide. Tellus B 67, 26329 (2015).

    Article  CAS  Google Scholar 

  25. Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J. & Andreae, M. O. Global budget of atmospheric carbonyl sulfide: temporal and spatial variations of the dominant sources and sinks. J. Geophys. Res. 107, ACH 25-1–ACH 25-16 (2002).

    Article  CAS  Google Scholar 

  26. Asaf, D. et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat. Geosci. 6, 186–190 (2013).

    Article  CAS  Google Scholar 

  27. Whelan, M. E. et al. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. Atmos. Chem. Phys. 16, 3711–3726 (2016).

    Article  CAS  Google Scholar 

  28. Campbell, J. E. et al. Atmospheric carbonyl sulfide sources from anthropogenic activity: implications for carbon cycle constraints. Geophys. Res. Lett. 42, 3004–3010 (2015).

    Article  CAS  Google Scholar 

  29. Zumkehr, A., Hilton, T. W., Whelan, M., Smith, S. & Campbell, J. E. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the US. J. Geophys. Res. 122, 2169–2178 (2017).

    CAS  Google Scholar 

  30. Kulkarni, S. et al. Source sector and region contributions to BC and PM2.5 in Central Asia. Atmos. Chem. Phys. 15, 1683–1705 (2015).

    Article  CAS  Google Scholar 

  31. Campbell, J. E. et al. Analysis of anthropogenic CO2 signal in ICARTT using a regional chemical transport model and observed tracers. Tellus B 59, 199–210 (2007).

    Article  CAS  Google Scholar 

  32. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  CAS  Google Scholar 

  33. Sellers, P. J. et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: model formulation. J. Clim. 9, 676–705 (1996).

    Article  Google Scholar 

  34. Sellers, P. J. et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 9, 706–737 (1996).

    Article  Google Scholar 

  35. Baker, I. T., Denning, A. S. & Stöckli, R. North American gross primary productivity: regional characterization and interannual variability. Tellus B 62, 533–549 (2010).

    Article  CAS  Google Scholar 

  36. Baker, I. T. et al. Seasonal drought stress in the Amazon: reconciling models and observations. J. Geophys. Res. 113, G00B01 (2008).

    Article  Google Scholar 

  37. Liu, J., Price, D. T. & Chen, J. M. Nitrogen controls on ecosystem carbon sequestration: a model implementation and application to Saskatchewan, Canada. Ecol. Model. 186, 178–195 (2005).

    Article  CAS  Google Scholar 

  38. Efron, B. & Tibshirani, R. Statistical data analysis in the computer age. Science 253, 390–395 (1991).

    Article  CAS  Google Scholar 

  39. Lokupitiya, E. et al. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences 6, 969–986 (2009).

    Article  CAS  Google Scholar 

  40. Corbin, K. D. et al. Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus B 62, 521–532 (2010).

    Article  CAS  Google Scholar 

  41. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. in ISLSCP Initiative II Collection (eds Hall, F. G. et al.) (Oak Ridge National Laboratory, 2009); http://daac.ornl.gov from Oak Ridge National Laboratory Distributed Active Archive Center.

    Google Scholar 

  42. Stimler, K., Berry, J. A. & Yakir, D. Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance. Plant Physiol. 158, 524–530 (2012).

    Article  CAS  Google Scholar 

  43. Kesselmeier, J., Teusch, N. & Kuhn, U. Controlling variables for the uptake of atmospheric carbonyl sulfide by soil. J. Geophys. Res. 104, 11577–11584 (1999).

    Article  CAS  Google Scholar 

  44. Sun, W., Maseyk, K., Lett, C. & Seibt, U. A soil diffusion-reaction model for surface COS flux: COSSM v1. Geosci. Model Dev. 8, 3055–3070 (2015).

    Article  CAS  Google Scholar 

  45. Ogée, J. et al. A new mechanistic framework to predict OCS fluxes from soils. Biogeosciences 13, 2221–2240 (2016).

    Article  CAS  Google Scholar 

  46. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

    Article  CAS  Google Scholar 

  47. Watts, S. F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 34, 761–779 (2000).

    Article  CAS  Google Scholar 

  48. Blake, N. J. et al. Carbonyl sulfide and carbon disulfide: large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. J. Geophys. Res. 109, D15S05 (2004).

    Article  CAS  Google Scholar 

  49. D’Allura, A. et al. Meteorological and air quality forecasting using the WRF–STEM model during the 2008 ARCTAS field campaign. Atmos. Environ. 45, 6901–6910 (2011).

    Article  CAS  Google Scholar 

  50. Canty, A. & Ripley, B. D. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-18 (R Foundation for Statistical Computing, 2016).

  51. Davison, A. C. & Hinkley, D. V. Bootstrap Methods and their Applications (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  52. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015); https://www.R-project.org

  53. Hilborn, R. & Mangel, M. The Ecological Detective: Confronting Models with Data (Princeton Univ. Press, 1997).

    Google Scholar 

  54. Jones, E. et al. SciPy: Open Source Scientific Tools for Python (SciPy Developers, 2001); http://www.scipy.org

    Google Scholar 

  55. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  56. McKinney, W. in Proceedings of the 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 51–56 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Terrestrial Ecosystem Sciences (DE-SC0011999). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the assistance of C. Siso and others at NOAA responsible for aircraft sampling program management, sampling, analysis, and logistics. NOAA contributions to this work were supported in part by the NOAA Climate Program Office’s AC4 Program.

Author information

Authors and Affiliations

Authors

Contributions

T.W.H., J.E.C. and J.A.B. designed research; T.W.H. performed research; M.E.W., S.A.M., C.S. and B.R.M. provided observed data; I.T.B. provided model results; S.K. provided transport model code and meteorology drivers; A.Z. provided anthropogenic COS flux inventories; T.W.H. and J.E.C. wrote the paper.

Corresponding author

Correspondence to Timothy W. Hilton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilton, T., Whelan, M., Zumkehr, A. et al. Peak growing season gross uptake of carbon in North America is largest in the Midwest USA. Nature Clim Change 7, 450–454 (2017). https://doi.org/10.1038/nclimate3272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing