Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

High-throughput assay for small molecules that modulate zebrafish embryonic heart rate

Abstract

To increase the facility and throughput of scoring phenotypic traits in embryonic zebrafish, we developed an automated micro-well assay for heart rate using automated fluorescence microscopy of transgenic embryos expressing green fluorescent protein in myocardium. The assay measures heart rates efficiently and accurately over a large linear dynamic range, and it rapidly characterizes dose dependence and kinetics of small molecule–induced changes in heart rate. This is the first high-throughput micro-well assay for organ function in an intact vertebrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-throughput heart-rate assay.
Figure 2: Rapid characterization of dose dependence and kinetics of response to drugs that decrease heart rate.

Similar content being viewed by others

References

  1. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  Google Scholar 

  2. Peterson, R.T., Mably, J.D., Chen, J.N. & Fishman, M.C. Curr. Biol. 11, 1481–1491 (2001).

    Article  CAS  Google Scholar 

  3. MacRae, C.A. & Peterson, R.T. Chem. Biol. 10, 901–908 (2003).

    Article  CAS  Google Scholar 

  4. Shafizadeh, E., Peterson, R.T. & Lin, S. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138, 245–249 (2004).

    Article  Google Scholar 

  5. Chan, J. & Serluca, F.C. Methods Cell Biol. 76, 475–487 (2004).

    Article  CAS  Google Scholar 

  6. Peterson, R.T. et al. Nat. Biotechnol. 22, 595–599 (2004).

    Article  CAS  Google Scholar 

  7. Zon, L.I. & Peterson, R.T. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  8. Milan, D.J., Peterson, T.A., Ruskin, J.N., Peterson, R.T. & MacRae, C.A. Circulation 107, 1355–1358 (2003).

    Article  Google Scholar 

  9. Antkiewicz, D.S., Burns, C.G., Carney, S.A., Peterson, R.E. & Heideman, W. Toxicol. Sci. 84, 368–377 (2005).

    Article  CAS  Google Scholar 

  10. Hill, A.J., Teraoka, H., Heideman, W. & Peterson, R.E. Toxicol. Sci. 86, 6–19 (2005).

    Article  CAS  Google Scholar 

  11. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J. & Tsai, H.J. Dev. Dyn. 228, 30–40 (2003).

    Article  CAS  Google Scholar 

  12. Hardman, J. & Limbird, L. (eds.). Goodman and Gilman's Pharmacological Basis of Therapeutics (MaGraw-Hill Companies Incorporated, New York, 2001).

    Google Scholar 

  13. Stainier, D.Y. et al. Development 123, 285–292 (1996).

    CAS  PubMed  Google Scholar 

  14. Chen, J.N. et al. Development 123, 293–302 (1996).

    CAS  PubMed  Google Scholar 

  15. Sehnert, A.J. & Stainier, D.Y. Trends Genet. 18, 491–494 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Felts for assistance with the automated microscope and Metamorph (Molecular Devices) software, D. Gilmour for providing the GFP expression plasmid pG1 and R. Peterson for use of the automated microscope. This work was funded by the US National Institutes of Health (NIH) grant 5T32HL07208-26 to Massachusetts General Hospital. C.G.B. was funded by National Institutes on Aging/NIH grant 1K01AG023562-01 and National Institute of Neurological Disorders and Stroke/NIH grant 1R03NS050806-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Geoffrey Burns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Pre-exposing wells to fluorescent light prior to subsite examination increased assay efficiency. (PDF 51 kb)

Supplementary Fig. 2 (PDF 77 kb)

Supplementary Table 1

Automated microscopy algorithm for acquisition and analysis of video images for measuring fluorescent heart rates of Tg(cmlc2:GFP) embryos arrayed in 96-well plates. (PDF 121 kb)

Supplementary Methods (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, C., Milan, D., Grande, E. et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 1, 263–264 (2005). https://doi.org/10.1038/nchembio732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing