Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular basis for NO selectivity in soluble guanylate cyclase

Abstract

Soluble guanylate cyclases (sGCs) function as heme sensors that selectively bind nitric oxide (NO), triggering reactions essential to animal physiology. Recent discoveries place sGCs in the H-NOX family (heme nitric oxide/oxygen-binding domain), which includes bacterial proteins from aerobic and anaerobic organisms. Some H-NOX proteins tightly bind oxygen (O2), whereas others show no measurable affinity for O2, providing the basis for selective NO signaling in aerobic cells. Using a series of wild-type and mutant H-NOXs, we established a molecular basis for ligand discrimination. A distal pocket tyrosine is requisite for O2 binding in the H-NOX family. These data suggest that sGC uses a kinetic selection against O2; we propose that the O2 dissociation rate in the absence of this tyrosine is fast and that a stable O2 complex does not form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Residues important for ligand discrimination in the H-NOX family.
Figure 2: UV-visible spectroscopy of H-NOX proteins after anaerobic reduction (FeII unligated complexes, blue) before and after being exposed to air (FeII–O2 complexes, red).
Figure 3: O2-binding kinetics of Tt H-NOX.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Denninger, J.W. & Marletta, M.A. Guanylate cyclase and the NO/cGMP signaling pathway. Acta Biochem. Biophys. 1411, 334–350 (1999).

    CAS  Google Scholar 

  2. Iyer, L.M., Anantharaman, V. & Aravind, L. Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 4, 5 (2003).

    Article  Google Scholar 

  3. Karow, D.S. et al. Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis . Biochemistry 43, 10203–10211 (2004).

    Article  CAS  Google Scholar 

  4. Pellicena, P. et al. Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc. Natl. Acad. Sci. USA 101, 12854–12859 (2004).

    Article  CAS  Google Scholar 

  5. Mathews, A.J. & Olson, J.S. Assignment of rate constants for O2 and CO binding to α-subunit and β-subunit within R-state and T-state human hemoglobin. Methods Enzymol. 232, 363–386 (1994).

    Article  CAS  Google Scholar 

  6. Draghi, F. et al. Controlling ligand binding in myoglobin by mutagenesis. J. Biol. Chem. 277, 7509–7519 (2002).

    Article  CAS  Google Scholar 

  7. Olson, J.S. & Phillips, G.N. Kinetic pathways and barriers for ligand binding to myoglobin. J. Biol. Chem. 271, 17593–17596 (1996).

    Article  CAS  Google Scholar 

  8. Springer, B.A., Sligar, S.G., Olson, J.S. & Phillips, G.N. Mechanisms of ligand recognition in myoglobin. Chem. Rev. 94, 699–714 (1994).

    Article  CAS  Google Scholar 

  9. Aono, S. et al. Resonance Raman and ligand binding studies of the oxygen-sensing signal transducer protein HemAT from Bacillus subtilis . J. Biol. Chem. 277, 13528–13538 (2002).

    Article  CAS  Google Scholar 

  10. Kundu, S., Trent, J.T. & Hargrove, M.S. Plants, humans and hemoglobins. Trends Plant Sci. 8, 387–393 (2003).

    Article  CAS  Google Scholar 

  11. Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A. & Guertin, M. Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem. 277, 871–874 (2002).

    Article  CAS  Google Scholar 

  12. Deinum, G., Stone, J.R., Babcock, G.T. & Marletta, M.A. Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with resonance raman spectroscopy. Biochemistry 35, 1540–1547 (1996).

    Article  CAS  Google Scholar 

  13. Oertling, W.A., Kean, R.T., Wever, R. & Babcock, G.T. Factors affecting the iron oxygen vibrations of ferrous oxy and ferryl oxo heme-proteins and model compounds. Inorg. Chem. 29, 2633–2645 (1990).

    Article  CAS  Google Scholar 

  14. Phillips, G.N. et al. Bound CO is a molecular probe of electrostatic potential in the distal pocket of myoglobin. J. Phys. Chem. B 103, 8817–8829 (1999).

    Article  CAS  Google Scholar 

  15. Nioche, P. et al. Femtomolar sensitivity of a NO sensor from Clostridium botulinum . Science 306, 1550–1553 (2004).

    Article  CAS  Google Scholar 

  16. Zhao, Y., Brandish, P.E., Ballou, D.P. & Marletta, M.A. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 96, 14753–14758 (1999).

    Article  CAS  Google Scholar 

  17. Gray, J.M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004).

    Article  CAS  Google Scholar 

  18. Morton, D.B. Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors. J. Biol. Chem. 279, 50651–50653 (2004).

    Article  CAS  Google Scholar 

  19. Quillin, M.L. et al. Structural and functional effects of apolar mutations of the distal valine in myoglobin. J. Mol. Biol. 245, 416–436 (1995).

    Article  CAS  Google Scholar 

  20. Hvitved, A.N., Trent, J.T., Premer, S.A. & Hargrove, M.S. Ligand binding and hexacoordination in Synechocystis hemoglobin. J. Biol. Chem. 276, 34714–34721 (2001).

    Article  CAS  Google Scholar 

  21. Hargrove, M.S. et al. Crystal structure of a nonsymbiotic plant hemoglobin. Structure Fold Des. 8, 1005–1014 (2000).

    Article  CAS  Google Scholar 

  22. Pesce, A. et al. Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11, 1087–1095 (2003).

    Article  CAS  Google Scholar 

  23. Gong, W., Hao, B. & Chan, M.K. New mechanistic insights from structural studies of the oxygen-sensing domain of Bradyrhizobium japonicum FixL. Biochemistry 39, 3955–3962 (2000).

    Article  CAS  Google Scholar 

  24. Gibson, Q.H. & Smith, M.H. Rates of reaction of Ascaris haemoglobins with ligands. Proc. R. Soc. Lond. Biol. 163, 206–214 (1965).

    Article  CAS  Google Scholar 

  25. Hargrove, M.S. et al. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants. J. Mol. Biol. 266, 1032–1042 (1997).

    Article  CAS  Google Scholar 

  26. Kiger, L. et al. Trematode hemoglobins show exceptionally high oxygen affinity. Biophys. J. 75, 990–998 (1998).

    Article  CAS  Google Scholar 

  27. Gilles-Gonzalez, M.A. et al. Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry 33, 8067–8073 (1994).

    Article  CAS  Google Scholar 

  28. Chang, A.L. et al. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40, 3420–3426 (2001).

    Article  CAS  Google Scholar 

  29. Dmochowski, I.J., Winkler, J.R. & Gray, H.B. Enantiomeric discrimination of Ru-substrates by cytochrome P450cam. J. Inorg. Biochem. 81, 221–228 (2000).

    Article  CAS  Google Scholar 

  30. Moore, E.G. & Gibson, Q.H. Cooperativity in the dissociation of nitric oxide from hemoglobin. J. Biol. Chem. 251, 2788–2794 (1976).

    CAS  PubMed  Google Scholar 

  31. Kharitonov, V.G., Sharma, V.S., Magde, D. & Koesling, D. Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry 36, 6814–6818 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Laboratory Directed Research and Development (LDRD) Fund from Lawrence Berkeley National Lab provided funding to M.A.M., the US National Science Foundation to S.H.H. and the Ruth L. Kirschstein National Research Service Award to E.M.B. (F32GM069302). We very gratefully acknowledge W. Belliston-Bittner, B. Leigh, J. Winkler and H. Gray at the Beckman Institute Laser Resource Center at the California Institute of Technology for their essential help in measuring oxygen association rates. We also thank J.H. Davis, P. Pellicena and J. Kuriyan at the University of California, Berkeley, as well as J. Dixon at the University of California, San Diego, and D. Ballou at the University of Michigan for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A Marletta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boon, E., Huang, S. & Marletta, M. A molecular basis for NO selectivity in soluble guanylate cyclase. Nat Chem Biol 1, 53–59 (2005). https://doi.org/10.1038/nchembio704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing