Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Allosteric regulation and catalysis emerge via a common route

Abstract

Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Different modes of allosteric behavior.
Figure 3: The kinetic pathway of DHFR catalysis shown together with DHFR conformational ensembles identified by NMR relaxation dispersion measurements.
Figure 4: Changing ensembles of protein conformation are manifested in catalysis and allostery.
Figure 5: Signal transduction network for TonB-dependent transporters.
Figure 6: Summary of the overall effect of binding of cAMP on the dynamics of CAP at various timescales.
Figure 7: The crystal structure of a tumor suppressor protein complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    CAS  PubMed  Google Scholar 

  2. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    CAS  PubMed  Google Scholar 

  3. Boehr, D.D., McElheny, D., Dyson, H.J. & Wright, P.E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    CAS  PubMed  Google Scholar 

  4. Loria, J.P., Berlow, R.B. & Watt, E.D. Characterization of enzyme motions by solution NMR relaxation dispersion. Acc. Chem. Res. 41, 214–221 (2008).

    CAS  PubMed  Google Scholar 

  5. Watt, E.D., Shimada, H., Kovrigin, E.L. & Loria, J.P. The mechanism of rate-limiting motions in enzyme function. Proc. Natl. Acad. Sci. USA 104, 11981–11986 (2007).

    CAS  PubMed  Google Scholar 

  6. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    CAS  PubMed  Google Scholar 

  7. Henzler-Wildman, K.A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    CAS  PubMed  Google Scholar 

  8. Swain, J.F. & Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 16, 102–108 (2006).

    CAS  PubMed  Google Scholar 

  9. Agarwal, P.K., Billeter, S.R., Rajagopalan, P.T.R., Benkovic, S.J. & Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 2794–2799 (2002).

    CAS  PubMed  Google Scholar 

  10. Böde, C. et al. Network analysis of protein dynamics. FEBS Lett. 581, 2776–2782 (2007).

    PubMed  Google Scholar 

  11. Süel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).

    PubMed  Google Scholar 

  12. Cooper, A. & Dryden, D.T.F. Allostery without conformational change. A plausible model. Eur. Biophys. J. 11, 103–109 (1984).

    CAS  PubMed  Google Scholar 

  13. Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–443 (2004).

    CAS  PubMed  Google Scholar 

  14. Kern, D. & Zuiderweg, E.R.P. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003).

    CAS  PubMed  Google Scholar 

  15. Bosco, D.A. & Kern, D. Catalysis and binding of cyclophilin A with different HIV-1 capsid constructs. Biochemistry 43, 6110–6119 (2004).

    CAS  PubMed  Google Scholar 

  16. Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 5247–5252 (2002).

    CAS  PubMed  Google Scholar 

  17. Cole, R. & Loria, J.P. Evidence for flexibility in the function of ribonuclease A. Biochemistry 41, 6072–6081 (2002).

    CAS  PubMed  Google Scholar 

  18. Louis, J.M., Ishima, R., Torchia, D.A. & Weber, I.T. HIV-1 protease: structure, dynamics, and inhibition. Adv. Pharmacol. 55, 261–298 (2007).

    CAS  PubMed  Google Scholar 

  19. Katoh, E. et al. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease-substrate complex. Protein Sci. 12, 1376–1385 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Freedberg, D.I. et al. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11, 221–232 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Massi, F., Wang, C. & Palmer, A.G. III. Solution NMR and computer simulation studies of active site loop motion in triosephosphate isomerase. Biochemistry 45, 10787–10794 (2006).

    CAS  PubMed  Google Scholar 

  22. Benkovic, S.J., Hammes, G.G. & Hammes-Schiffer, S. Free-energy landscape of enzyme catalysis. Biochemistry 47, 3317–3321 (2008).

    CAS  PubMed  Google Scholar 

  23. Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. & Wright, P.E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 (2001).

    CAS  PubMed  Google Scholar 

  24. Henzler-Wildman, K.A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    CAS  PubMed  Google Scholar 

  25. Brath, U., Akke, M., Yang, D., Kay, L.E. & Mulder, F.A. Functional dynamics of human FKBP12 revealed by methyl 13C rotating frame relaxation dispersion NMR spectroscopy. J. Am. Chem. Soc. 128, 5718–5727 (2006).

    CAS  PubMed  Google Scholar 

  26. Mulder, F.A., Hon, B., Mittermaier, A., Dahlquist, F.W. & Kay, L.E. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 124, 1443–1451 (2002).

    CAS  PubMed  Google Scholar 

  27. Choy, W.Y. et al. Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J. Mol. Biol. 316, 101–112 (2002).

    CAS  PubMed  Google Scholar 

  28. Hilser, V.J. & Thompson, E.B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. USA 104, 8311–8315 (2007).

    CAS  PubMed  Google Scholar 

  29. Luque, I., Leavitt, S.A. & Freire, E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu. Rev. Biophys. Biomol. Struct. 31, 235–256 (2002).

    CAS  PubMed  Google Scholar 

  30. Daily, M.D. & Gray, J.J. Local motions in a benchmark of allosteric proteins. Proteins 67, 385–399 (2007).

    CAS  PubMed  Google Scholar 

  31. Weber, G. Ligand binding and internal equilibria in proteins. Biochemistry 11, 864–878 (1972).

    CAS  PubMed  Google Scholar 

  32. Freire, E. Can allosteric regulation be predicted from structure? Proc. Natl. Acad. Sci. USA 97, 11680–11682 (2000).

    CAS  PubMed  Google Scholar 

  33. Chennubhotla, C., Yang, Z. & Bahar, I. Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. Mol. Biosyst. 4, 287–292 (2008).

    CAS  PubMed  Google Scholar 

  34. Amaro, R.E., Sethi, A., Myers, R.S., Davisson, V.J. & Luthey-Schulten, Z.A. A network of conserved interactions regulates the allosteric signal in a glutamine amidotransferase. Biochemistry 46, 2156–2173 (2007).

    CAS  PubMed  Google Scholar 

  35. Masterson, L.R., Mascioni, A., Traaseth, N.J., Taylor, S.S. & Veglia, G. Allosteric cooperativity in protein kinase A. Proc. Natl. Acad. Sci. USA 105, 506–511 (2008).

    CAS  PubMed  Google Scholar 

  36. Rakauskaite, R. & Dinman, J.D. rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance. Nucleic Acids Res. 36, 1497–1507 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS ONE 2, E1310 (2007).

    PubMed  PubMed Central  Google Scholar 

  38. Daily, M.D., Upadhyaya, T.J. & Gray, J.J. Contact rearrangements form coupled networks from local motions in allosteric proteins. Proteins 71, 455–466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Niu, X. et al. Interesting structural and dynamical behaviors exhibited by the AF-6 PDZ domain upon Bcr peptide binding. Biochemistry 46, 15042–15053 (2007).

    CAS  PubMed  Google Scholar 

  40. Ricketson, D., Hostick, U., Fang, L., Yamamoto, K.R. & Darimont, B.D. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol. 368, 729–741 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cameron, C.E. & Benkovic, S.J. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Biochemistry 36, 15792–15800 (1997).

    CAS  PubMed  Google Scholar 

  42. Gandhi, P.S., Chen, Z., Mathews, F.S. & Di Cera, E. Structural identification of the pathway of long-range communication in an allosteric enzyme. Proc. Natl. Acad. Sci. USA 105, 1832–1837 (2008).

    CAS  PubMed  Google Scholar 

  43. Lee, M., Chan, C.W., Mitchell Guss, J., Christopherson, R.I. & Maher, M.J. Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits. J. Mol. Biol. 348, 523–533 (2005).

    CAS  PubMed  Google Scholar 

  44. Heddle, J.G. et al. Dynamic allostery in the ring protein TRAP. J. Mol. Biol. 371, 154–167 (2007).

    CAS  PubMed  Google Scholar 

  45. Yu, P., Lasagna, M., Pawlyk, A.C., Reinhart, G.D. & Pettigrew, D.W. IIAGlc inhibition of glycerol kinase: a communications network tunes protein motions at the allosteric site. Biochemistry 46, 12355–12365 (2007).

    CAS  PubMed  Google Scholar 

  46. Sadovsky, E. & Yifrach, O. Principles underlying energetic coupling along an allosteric communication trajectory of a voltage-activated K+ channel. Proc. Natl. Acad. Sci. USA 104, 19813–19818 (2007).

    CAS  PubMed  Google Scholar 

  47. Piper, D.R., Rupp, J., Sachse, F.B., Sanguinetti, M.C. & Tristani-Firouzi, M. Cooperative interactionis between R531 and acidic residues in the voltage sensing module of hERG1 channels. Cell. Physiol. Biochem. 21, 37–46 (2008).

    CAS  PubMed  Google Scholar 

  48. Ferguson, A.D. et al. Signal transduction pathway of TonB-dependent transporters. Proc. Natl. Acad. Sci. USA 104, 513–518 (2007).

    CAS  PubMed  Google Scholar 

  49. Hatley, M.E., Lockless, S.W., Gibson, S.K., Gilman, A.G. & Ranganathan, R. Allosteric determinants in guanine nucleotide-binding proteins. Proc. Natl. Acad. Sci. USA 100, 14445–14450 (2003).

    CAS  PubMed  Google Scholar 

  50. Lockless, S.W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999).

    CAS  PubMed  Google Scholar 

  51. Shulman, A.I., Larson, C., Mangelsdorf, D.J. & Ranganathan, R. Structural determinants of allosteric ligand activation in RXR heterodimers. Cell 116, 417–429 (2004).

    CAS  PubMed  Google Scholar 

  52. Chi, C.N. et al. Reassessing a sparse energetic network within a single protein domain. Proc. Natl. Acad. Sci. USA 105, 4679–4684 (2008).

    CAS  PubMed  Google Scholar 

  53. Ferguson, A.D. & Deisenhofer, J. Metal import through microbial membranes. Cell 116, 15–24 (2004).

    CAS  PubMed  Google Scholar 

  54. Popovych, N., Sun, S., Ebright, R.H. & Kalodimos, C.G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Alfano, C. et al. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat. Struct. Mol. Biol. 11, 323–329 (2004).

    CAS  PubMed  Google Scholar 

  56. Bonaccio, M., Ghaderi, N., Borchardt, D. & Dunn, M.F. Insulin allosteric behavior: detection, identification, and quantification of allosteric states via 19F NMR. Biochemistry 44, 7656–7668 (2005).

    CAS  PubMed  Google Scholar 

  57. Li, Z. et al. A mutation in the S-switch region of the Runt domain alters the dynamics of an allosteric network responsible for CBFbeta regulation. J. Mol. Biol. 364, 1073–1083 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Abu-Abed, M., Das, R., Wang, L. & Melacini, G. Definition of an electrostatic relay switch critical for the cAMP-dependent activation of protein kinase A as revealed by the D170A mutant of RIalpha. Proteins 69, 112–124 (2007).

    CAS  PubMed  Google Scholar 

  59. Budiman, M.E., Knaggs, M.H., Fetrow, J.S. & Alexander, R.W. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Proteins 68, 670–689 (2007).

    CAS  PubMed  Google Scholar 

  60. Zhuravleva, A. et al. Propagation of dynamic changes in barnase upon binding of barstar: an NMR and computational study. J. Mol. Biol. 367, 1079–1092 (2007).

    CAS  PubMed  Google Scholar 

  61. Salvesen, G.S. & Riedl, S.J. Caspase inhibition, specifically. Structure 15, 513–514 (2007).

    CAS  PubMed  Google Scholar 

  62. Schweizer, A. et al. Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15, 625–636 (2007).

    CAS  PubMed  Google Scholar 

  63. Bertrand, D. & Gopalakrishnan, M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem. Pharmacol. 74, 1155–1163 (2007).

    CAS  PubMed  Google Scholar 

  64. Raddatz, R., Schaffhauser, H. & Marino, M.J. Allosteric approaches to the targeting of G-protein-coupled receptors for novel drug discovery: a critical assessment. Biochem. Pharmacol. 74, 383–391 (2007).

    CAS  PubMed  Google Scholar 

  65. Ross, R.A. Allosterism and cannabinoid CB1 receptors: the shape of things to come. Trends Pharmacol. Sci. 28, 567–572 (2007).

    CAS  PubMed  Google Scholar 

  66. Shi, Z., Resing, K.A. & Ahn, N.G. Networks for the allosteric control of protein kinases. Curr. Opin. Struct. Biol. 16, 686–692 (2006).

    CAS  PubMed  Google Scholar 

  67. Hardy, J.A. & Wells, J.A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).

    CAS  PubMed  Google Scholar 

  68. Liu, J. & Nussinov, R. Allosteric effects in the marginally stable von Hippel-Lindau tumor suppressor protein and allostery-based rescue mutant design. Proc. Natl. Acad. Sci. USA 105, 901–906 (2008).

    CAS  PubMed  Google Scholar 

  69. Erlanson, D.A., Wells, J.A. & Braisted, A.C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223 (2004).

    CAS  PubMed  Google Scholar 

  70. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9, 268–272 (2002).

    CAS  PubMed  Google Scholar 

  71. Montalban, A.G. et al. The design and synthesis of novel alpha-ketoamide-based p38 MAP kinase inhibitors. Bioorg. Med. Chem. Lett. 18, 1772–1777 (2008).

    CAS  PubMed  Google Scholar 

  72. Zhang, X.-Y. & Bishop, A.C. Site-specific incorporation of allosteric-inhibition sites in a protein tyrosine phosphatase. J. Am. Chem. Soc. 129, 3812–3813 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ostermeier, M. Engineering allosteric protein switches by domain insertion. Protein Eng. Des. Sel. 18, 359–364 (2005).

    CAS  PubMed  Google Scholar 

  74. Dueber, J.E., Mirsky, E.A. & Lim, W.A. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

    CAS  PubMed  Google Scholar 

  75. Dueber, J.E., Yeh, B.J., Chak, K. & Lim, W.A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

    CAS  PubMed  Google Scholar 

  76. Guntas, G., Mitchell, S.F. & Ostermeier, M. A molecular switch created by in vitro recombination of nonhomologous genes. Chem. Biol. 11, 1483–1487 (2004).

    CAS  PubMed  Google Scholar 

  77. Sathyapriya, R. & Vishveshwara, S. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding. Proteins 68, 541–550 (2007).

    CAS  PubMed  Google Scholar 

  78. Kendrew, J.C. et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662–666 (1958).

    CAS  PubMed  Google Scholar 

  79. Pardee, A.B. & Reddy, G.P. Beginnings of feedback inhibition, allostery, and multi-protein complexes. Gene 321, 17–23 (2003).

    CAS  PubMed  Google Scholar 

  80. Koshland, D.E. Jr., Nemethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    CAS  PubMed  Google Scholar 

  81. Bryngelson, J.D. & Wolynes, P.G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 84, 7524–7528 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Hammes-Schiffer for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Benkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodey, N., Benkovic, S. Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4, 474–482 (2008). https://doi.org/10.1038/nchembio.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing