Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural strategies for the spatial optimization of metabolism in synthetic biology

Abstract

Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nested endosymbiosis in the cockroach hindgut.
Figure 2: Microbial assemblages can perform coupled metabolic reactions.
Figure 3: Compartmentalization isolates metabolic pathways in eukaryotic and prokaryotic cells.
Figure 4: Enzyme complexes aid in the breakdown and production of complex molecules.
Figure 5: Electron transfer pathways are optimized through spatial organization.

Similar content being viewed by others

References

  1. Gijzen, H.J. & Barugahare, M. Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach, Periplaneta americana. Appl. Environ. Microbiol. 58, 2565–2570 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Hoek, A.H. et al. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol. Biol. Evol. 17, 251–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Akhmanova, A. et al. A hydrogenosome with a genome. Nature 396, 527–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Ushida, K. Symbiotic methanogens and rumen ciliates. in (Endo)symbiotic Methanogenic Archaea (ed. Hackstein, J.H.P.) 25–34 (Springer, 2011).

    Google Scholar 

  5. Boxma, B. et al. An anaerobic mitochondrion that produces hydrogen. Nature 434, 74–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Yeates, T.O., Crowley, C.S. & Tanaka, S. Bacterial microcompartment organelles: protein shell structure and evolution. Annu. Rev. Biophys. 9, 185–205 (2010).

    Article  CAS  Google Scholar 

  7. MacLeod, F.A., Guiot, S. & Costerton, J. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56, 1598–1607 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, H., DeLoache, W.C. & Dueber, J.E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Solomon, K.V. & Prather, K.L.J. The zero-sum game of pathway optimization: Emerging paradigms for tuning gene expression. Biotechnol. J. 6, 1064–1070 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Brenner, K., You, L. & Arnold, F. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Zuroff, T.R. & Curtis, W.R. Developing symbiotic consortia for lignocellulosic biofuel production. Appl. Microbiol. Biotechnol. 93, 1423–1435 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Shin, H.-D., McClendon, S., Vo, T. & Chen, R.R. Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl. Environ. Microbiol. 76, 8150–8159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai, S.L., Oh, J., Singh, S., Chen, R. & Chen, W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75, 6087–6093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe, K. Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J. Biol. Chem. 278, 42020–42026 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Weeks, A., Lund, L. & Raushel, F.M. Tunneling of intermediates in enzyme-catalyzed reactions. Curr. Opin. Chem. Biol. 10, 465–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bonacci, W. et al. Modularity of a carbon-fixing protein organelle. Proc. Natl. Acad. Sci. USA 109, 478–483 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Staunton, J. & Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Thattai, M., Burak, Y. & Shraiman, B.I. The origins of specificity in polyketide synthase protein interactions. PLoS Comput. Biol. 3, 1827–1835 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, H.J., Du, W. & Ismagilov, R.F. Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(II). Integr. Biol. (Camb.) 3, 126–133 (2011).

    Article  CAS  Google Scholar 

  21. Goyal, G., Tsai, S.-L., Madan, B., DaSilva, N.A. & Chen, W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb. Cell Fact. 10, 89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogels, G.D., Hoppe, W.F. & Stumm, C.K. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40, 608–612 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, M.J., Schreurs, P.J., Messer, A.C. & Zinder, S.H. Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr. Microbiol. 15, 337–341 (1987).

    Article  Google Scholar 

  24. Gonzalez-Gil, G. et al. Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl. Environ. Microbiol. 67, 3683–3692 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, W.T., Chan, O.C. & Fang, H.H.P. Characterization of microbial community in granular sludge treating brewery wastewater. Water Res. 36, 1767–1775 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65, 1280–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boone, D.R. & Bryant, M.P. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40, 626–632 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dwyer, D.F., Weeg-Aerssens, E., Shelton, D.R. & Tiedje, J.M. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl. Environ. Microbiol. 54, 1354–1359 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raven, J.A., Cockell, C.S. & De La Rocha, C.L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Lond. B. Biol. Sci. 363, 2641–2650 (2008).

    Article  CAS  Google Scholar 

  30. Kumar, K., Mella-Herrera, R.A. & Golden, J.W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, a000315 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Meeks, J.C. & Elhai, J. Regulation of cellular differentiation in filamentous Cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev. 66, 94–121 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stevenson, B.S. et al. Hoeflea anabaenae sp. nov., an epiphytic symbiont that attaches to the heterocysts of a strain of Anabaena. Int. J. Syst. Evol. Microbiol. 61, 2439–2444 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Phelan, V.V., Liu, W.-T., Pogliano, K. & Dorrestein, P.C. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat. Chem. Biol. 8, 26–35 (2011).

    Article  PubMed  CAS  Google Scholar 

  34. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. You, L., Cox, R.S., Weiss, R. & Arnold, F.H. Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Markx, G.H., Andrews, J.S. & Mason, V.P. Towards microbial tissue engineering? Trends Biotechnol. 22, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lanthier, M., Tartakovsky, B., Villemur, R., DeLuca, G. & Guiot, S.R. Microstructure of anaerobic granules bioaugmented with Desulfitobacterium frappieri PCP-1. Appl. Environ. Microbiol. 68, 4035–4043 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Summers, Z.M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro, J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Shou, W., Ram, S. & Vilar, J.M.G. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wintermute, E.H. & Silver, P.A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim, H.J., Boedicker, J.Q., Choi, J.W. & Ismagilov, R.F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kerr, B., Riley, M. & Feldman, M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tvede, M. & Rask-Madsen, J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1, 1156–1160 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Shong, J., Jimenez Diaz, M.R. & Collins, C.H. Towards synthetic microbial consortia for bioprocessing. Curr. Opin. Biotechnol. published online, doi:10.1016/j.copbio.2012.02.001 (1 March 2012).

  47. Riesenfeld, C.S., Schloss, P.D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Daniel, R. The metagenomics of soil. Nat. Rev. Microbiol. 3, 470–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choudhary, S. & Schmidt-Dannert, C. Applications of quorum sensing in biotechnology. Appl. Microbiol. Biotechnol. 86, 1267–1279 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Aldaye, F.A., Senapedis, W.T., Silver, P.A. & Way, J.C. A structurally tunable DNA-based extracellular matrix. J. Am. Chem. Soc. 132, 14727–14729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Embley, T.M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Howe, C.J., Barbrook, A.C., Nisbet, R.E.R., Lockhart, P.J. & Larkum, A.W.D. The origin of plastids. Phil. Trans. R. Soc. Lond. B 363, 2675–2685 (2008).

    Article  CAS  Google Scholar 

  54. van der Klei, I.J., Yurimoto, H., Sakai, Y. & Veenhuis, M. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta 1763, 1453–1462 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Yurimoto, H., Oku, M. & Sakai, Y. Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int. J. Microbiol. 2011, 101298 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. van der Klei, I.J., Harder, W. & Veenhuis, M. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 7, 195–209 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Ozimek, P., Veenhuis, M. & van der Klei, I.J. Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res. 5, 975–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Vonck, J. & van Bruggen, E.F. Architecture of peroxisomal alcohol oxidase crystals from the methylotrophic yeast Hansenula polymorpha as deduced by electron microscopy. J. Bacteriol. 174, 5391–5399 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roggenkamp, R. Targeting signals for protein import into peroxisomes. Cell Biochem. Funct. 10, 193–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Bayer, T.S. et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131, 6508–6515 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Lin, J.-P. et al. An effective strategy for the co-production of S-adenosyl-L-methionine and glutathione by fed-batch fermentation. Biochem. Eng. J. 21, 19–25 (2004).

    Article  CAS  Google Scholar 

  62. Agapakis, C.M. et al. Towards a synthetic chloroplast. PLoS ONE 6, e18877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Savage, D.F., Afonso, B., Chen, A.H. & Silver, P.A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258–1261 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Iancu, C.V. et al. The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. J. Mol. Biol. 372, 764–773 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. So, A.K.-C. et al. A novel evolutionary lineage of carbonic anhydrase (e class) is a component of the carboxysome shell. J. Bacteriol. 186, 623–630 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Price, G.D. & Badger, M.R. Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype: evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol. 91, 505–513 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klein, M.G. et al. Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J. Mol. Biol. 392, 319–333 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Cheng, S. & Bobik, T.A. Characterization of the PduS cobalamin reductase of Salmonella enterica and its role in the Pdu microcompartment. J. Bacteriol. 192, 5071–5080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng, S., Liu, Y., Crowley, C.S., Yeates, T.O. & Bobik, T.A. Bacterial microcompartments: their properties and paradoxes. Bioessays 30, 1084–1095 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fan, C. et al. Short N-terminal sequences package proteins into bacterial microcompartments. Proc. Natl. Acad. Sci. USA 107, 7509–7514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parsons, J.B. et al. Biochemical and structural insights into bacterial organelle form and biogenesis. J. Biol. Chem. 283, 14366–14375 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Doblin, M.S., Kurek, I., Jacob-Wilk, D. & Delmer, D.P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43, 1407–1420 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Ding, S.-Y. & Himmel, M.E. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54, 597–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Fontes, C.M.G.A. & Gilbert, H.J. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79, 655–681 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Fischbach, M. & Voigt, C.A. Prokaryotic gene clusters: a rich toolbox for synthetic biology. Biotechnol. J. 5, 1277–1296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sabathé, F. & Soucaille, P. Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J. Bacteriol. 185, 1092–1096 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lilly, M., Fierobe, H.-P., van Zyl, W.H. & Volschenk, H. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res. 9, 1236–1249 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Anderson, T.D. et al. Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl. Environ. Microbiol. 77, 4849–4858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moraïs, S. et al. Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl. Environ. Microbiol. 76, 3787–3796 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Moraïs, S. et al. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1, e00285–e00210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Smith, S. & Tsai, S.-C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24, 1041 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weissman, K.J. & Müller, R. Protein-protein interactions in multienzyme megasynthetases. ChemBioChem 9, 826–848 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. McDaniel, R. et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc. Natl. Acad. Sci. USA 96, 1846–1851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Menzella, H.G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol. 23, 1171–1176 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Tang, L., Fu, H. & McDaniel, R. Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases. Chem. Biol. 7, 77–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Gokhale, R.S., Tsuji, S.Y., Cane, D.E. & Khosla, C. Dissecting and exploiting intermodular communication in polyketide synthases. Science 284, 482–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Skerker, J.M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park, S.-H., Zarrinpar, A. & Lim, W.A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Bashor, C.J., Helman, N.C., Yan, S. & Lim, W.A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Bhattacharyya, R.P., Reményi, A., Yeh, B.J. & Lim, W.A. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75, 655–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Page, C.C., Moser, C.C., Chen, X. & Dutton, P.L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Bretschger, O. et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Urlacher, V.B. & Eiben, S. Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol. 24, 324–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Shiota, N., Kodama, S., Inui, H. & Ohkawa, H. Expression of human cytochromes P450 1A1 and P450 1A2 as fused enzymes with yeast NADPH-cytochrome P450 oxidoreductase in transgenic tobacco plants. Biosci. Biotechnol. Biochem. 64, 2025–2033 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Dodhia, V.R., Fantuzzi, A. & Gilardi, G. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego. J. Biol. Inorg. Chem. 11, 903–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Aliverti, A. & Zanetti, G. A three-domain iron-sulfur flavoprotein obtained through gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves. Biochemistry 36, 14771–14777 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Agapakis, C.M. et al. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J. Biol. Eng. 4, 3 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ihara, M. et al. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82, 676–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Lubner, C.E. et al. Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc. Natl. Acad. Sci. USA 108, 20988–20991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Conrado, R.J. et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 40, 1879–1889 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Hackstein, Z. Summers, D. Lovley, D. Savage and B. Afonso for the use of images. P.M.B. is supported by fellowships from the Harvard University Center for the Environment and the US National Science Foundation Synthetic Biology Engineering Research Center. P.A.S. acknowledges support from the Radcliffe Institute of Advanced Study, the Wyss Institute for Biologically Inspired Engineering, the Department of Defense Army Research Office and the Department of Energy Advanced Research Projects Agency-Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela A Silver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agapakis, C., Boyle, P. & Silver, P. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol 8, 527–535 (2012). https://doi.org/10.1038/nchembio.975

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.975

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research