Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic translational regulation by an L7Ae–kink-turn RNP switch

Abstract

The regulation of cell signaling pathways and the reconstruction of genetic circuits are important aspects of bioengineering research. Both of these goals require molecular devices to transmit information from an input biomacromolecule to the desired outputs. Here, we show that an RNA-protein (RNP)-containing L7Ae–kink-turn interaction can be used to construct translational regulators under control of an input protein that regulates the expression of desired output proteins. We built a system in which L7Ae, an archaeal ribosomal protein, regulates the translation of a designed mRNA in vitro and in human cells. The translational regulator composed of the RNP might provide new therapeutic strategies based on the detection, repair or rewiring of intrinsic cellular defects, and it may also serve as an invaluable tool for the dissection of the behavior of complex, higher-order circuits in the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the translational regulation research using the L7Ae–K-turn complex.
Figure 2: In vitro translational repression using the L7Ae–K-turn interaction.
Figure 3: In vitro translational activation using the L7Ae–K-turn interaction.
Figure 4: Translational repression in human cells.
Figure 5: Translational repression using an input protein encoded in the genome.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  2. Gottesman, S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58, 303–328 (2004).

    Article  CAS  Google Scholar 

  3. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  4. Wang, D.O. et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324, 1536–1540 (2009).

    Article  CAS  Google Scholar 

  5. St. Johnston, D. Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363–375 (2005).

    Article  CAS  Google Scholar 

  6. Hentze, M.W. et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238, 1570–1573 (1987).

    Article  CAS  Google Scholar 

  7. Ray, P.S. et al. A stress-responsive RNA switch regulates VEGFA expression. Nature 457, 915–919 (2009).

    Article  CAS  Google Scholar 

  8. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  Google Scholar 

  9. Isaacs, F.J., Dwyer, D.J. & Collins, J.J. RNA synthetic biology. Nat. Biotechnol. 24, 545–554 (2006).

    Article  CAS  Google Scholar 

  10. Drubin, D.A., Way, J.C. & Silver, P.A. Designing biological systems. Genes Dev. 21, 242–254 (2007).

    Article  CAS  Google Scholar 

  11. Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  Google Scholar 

  12. Win, M.N., Liang, J.C. & Smolke, C.D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    Article  CAS  Google Scholar 

  13. Dueber, J.E., Yeh, B.J., Bhattacharyya, R.P. & Lim, W.A. Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr. Opin. Struct. Biol. 14, 690–699 (2004).

    Article  CAS  Google Scholar 

  14. Winkler, W.C. Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9, 594–602 (2005).

    Article  CAS  Google Scholar 

  15. Gallivan, J.P. Toward reprogramming bacteria with small molecules and RNA. Curr. Opin. Chem. Biol. 11, 612–619 (2007).

    Article  CAS  Google Scholar 

  16. Sharma, V., Nomura, Y. & Yokobayashi, Y. Engineering complex riboswitch regulation by dual genetic selection. J. Am. Chem. Soc. 130, 16310–16315 (2008).

    Article  CAS  Google Scholar 

  17. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  Google Scholar 

  18. Suess, B. & Weigand, J.E. Engineered riboswitches—overview, problems and trends. RNA Biol. 5, 24–29 (2008).

    Article  CAS  Google Scholar 

  19. Yamauchi, T. et al. Riboswitches for enhancing target gene expression in eukaryotes. ChemBioChem 9, 1040–1043 (2008).

    Article  CAS  Google Scholar 

  20. Ogawa, A. & Maeda, M. An artificial aptazyme-based riboswitch and its cascading system in E. coli. ChemBioChem 9, 206–209 (2008).

    Article  CAS  Google Scholar 

  21. Topp, S. & Gallivan, J.P. Riboswitches in unexpected places—a synthetic riboswitch in a protein coding region. RNA 14, 2498–2503 (2008).

    Article  CAS  Google Scholar 

  22. Wieland, M. & Hartig, J.S. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew. Chem. Int. Edn Engl. 47, 2604–2607 (2008).

    Article  CAS  Google Scholar 

  23. Stripecke, R. & Hentze, M.W. Bacteriophage and spliceosomal proteins function as position-dependent cis/trans repressors of mRNA translation in vitro. Nucleic Acids Res. 20, 5555–5564 (1992).

    Article  CAS  Google Scholar 

  24. Paraskeva, E., Atzberger, A. & Hentze, M.W. A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 95, 951–956 (1998).

    Article  CAS  Google Scholar 

  25. Nie, M. & Htun, H. Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5′-UTR. Nucleic Acids Res. 34, 5528–5540 (2006).

    Article  CAS  Google Scholar 

  26. Atsumi, S., Ikawa, Y., Shiraishi, H. & Inoue, T. Design and development of a catalytic ribonucleoprotein. EMBO J. 20, 5453–5460 (2001).

    Article  CAS  Google Scholar 

  27. Saito, H. & Inoue, T. RNA and RNP as new molecular parts in synthetic biology. J. Biotechnol. 132, 1–7 (2007).

    Article  CAS  Google Scholar 

  28. Saito, H. & Inoue, T. Synthetic biology with RNA motifs. Int. J. Biochem. Cell Biol. 41, 398–404 (2009).

    Article  CAS  Google Scholar 

  29. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  Google Scholar 

  30. Szostak, J.W., Bartel, D.P. & Luisi, P.L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  Google Scholar 

  31. Saito, H. et al. Time-resolved tracking of a minimum gene expression system reconstituted in giant liposomes. ChemBioChem 10, 1640–1643 (2009).

    Article  CAS  Google Scholar 

  32. Rozhdestvensky, T.S. et al. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res. 31, 869–877 (2003).

    Article  CAS  Google Scholar 

  33. Moore, T., Zhang, Y., Fenley, M.O. & Li, H. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12, 807–818 (2004).

    Article  CAS  Google Scholar 

  34. Turner, B., Melcher, S.E., Wilson, T.J., Norman, D.G. & Lilley, D.M. Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. RNA 11, 1192–1200 (2005).

    Article  CAS  Google Scholar 

  35. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  Google Scholar 

  36. Matsumura, S., Ikawa, Y. & Inoue, T. Biochemical characterization of the kink-turn RNA motif. Nucleic Acids Res. 31, 5544–5551 (2003).

    Article  CAS  Google Scholar 

  37. Hamma, T. & Ferre-D'Amare, A.R. Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 A resolution. Structure 12, 893–903 (2004).

    Article  CAS  Google Scholar 

  38. Nolivos, S., Carpousis, A.J. & Clouet-d'Orval, B. The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res. 33, 6507–6514 (2005).

    Article  CAS  Google Scholar 

  39. Reichow, S.L., Hamma, T., Ferre-D'Amare, A.R. & Varani, G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35, 1452–1464 (2007).

    Article  CAS  Google Scholar 

  40. Macias, S., Bragulat, M., Tardiff, D.F. & Vilardell, J. L30 binds the nascent RPL30 transcript to repress U2 snRNP recruitment. Mol. Cell 30, 732–742 (2008).

    Article  CAS  Google Scholar 

  41. Chavatte, L., Brown, B.A. & Driscoll, D.M. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat. Struct. Mol. Biol. 12, 408–416 (2005).

    Article  CAS  Google Scholar 

  42. Gebauer, F. & Hentze, M.W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Article  CAS  Google Scholar 

  43. Babitzke, P., Baker, C.S. & Romeo, T. Regulation of translation initiation by RNA binding proteins. Annu. Rev. Microbiol. 63, 27–44 (2009).

    Article  CAS  Google Scholar 

  44. Katoh, T. & Suzuki, T. Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acids Res. 35, e27 (2007).

    Article  Google Scholar 

  45. Weber, W. & Fussenegger, M. Engineering of synthetic mammalian gene networks. Chem. Biol. 16, 287–297 (2009).

    Article  CAS  Google Scholar 

  46. Kaern, M. & Weiss, R. System Modeling in Cellular Biology Ch. 13 (The MIT Press, Cambridge, Massachusetts, 2006).

  47. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Shimizu (University of Tokyo) for providing us with the PURE system solutions, A. Huttenhofer (Innsbruck Medical University, Biocenter) and T.S. Rozhdestvensky (University of Muenster) for providing us with the L7Ae plasmids, and S. Kashida (Kyoto University) for providing us with the p481 and pSk-7 plasmids. The authors also thank A. Kitamura (JST) for RNP structural modeling. This work was supported by a Grant-in-Aid for Young Scientists (A) (H.S.) and the International Cooperative Research Project, Japan Science and Technology Agency (H.S. and T.I.).

Author information

Authors and Affiliations

Authors

Contributions

H.S., T.K. and T.I. designed the experiments and analyzed the results. H.S., T.K., T.H. and R.F. performed the in vitro translation assays and the RNP interaction assays. Y.F. and K.H. performed the in vivo translation assays. H.S. and T.I. wrote the manuscript.

Corresponding authors

Correspondence to Hirohide Saito or Tan Inoue.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Methods (PDF 5157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, H., Kobayashi, T., Hara, T. et al. Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat Chem Biol 6, 71–78 (2010). https://doi.org/10.1038/nchembio.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing