Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase

Abstract

Pyrrolysyl-tRNA synthetase (PylRS) is a major tool in genetic code expansion using noncanonical amino acids, yet its structure and function are not completely understood. Here we describe the crystal structure of the previously uncharacterized essential N-terminal domain of this unique enzyme in complex with tRNAPyl. This structure explains why PylRS remains orthogonal in a broad range of organisms, from bacteria to humans. The structure also illustrates why tRNAPyl recognition by PylRS is anticodon independent: the anticodon does not contact the enzyme. Then, using standard microbiological culture equipment, we established a new method for laboratory evolution—a noncontinuous counterpart of the previously developed phage-assisted continuous evolution. With this method, we evolved novel PylRS variants with enhanced activity and amino acid specificity. Finally, we employed an evolved PylRS variant to determine its N-terminal domain structure and show how its mutations improve PylRS activity in the genetic encoding of a noncanonical amino acid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of the wild-type and PANCE-evolved PylRS variants bound to tRNAPyl.
Figure 2: Structural basis for the PylRS specificity to tRNAPyl.
Figure 3: PANCE method application and overview.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Mukai, T. et al. RNA-dependent cysteine biosynthesis in bacteria and archaea. MBio 8, e00561–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wan, W., Tharp, J.M. & Liu, W.R. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059–1070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crnković, A., Suzuki, T., Söll, D. & Reynolds, N.M. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion. Croat. Chem. Acta 89, 163–174 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gaston, M.A., Jiang, R. & Krzycki, J.A. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr. Opin. Microbiol. 14, 342–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukai, T. et al. Adding L-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 371, 818–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Chin, J.W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Ambrogelly, A. et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc. Natl. Acad. Sci. USA 104, 3141–3146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ho, J.M. et al. Efficient reassignment of a frequent serine codon in wild-type Escherichia coli. ACS Synth. Biol. 5, 163–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Yanagisawa, T., Umehara, T., Sakamoto, K. & Yokoyama, S. Expanded genetic code technologies for incorporating modified lysine at multiple sites. ChemBioChem 15, 2181–2187 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Guo, L.T. et al. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc. Natl. Acad. Sci. USA 111, 16724–16729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, R. & Krzycki, J.A. PylSn and the homologous N-terminal domain of pyrrolysyl-tRNA synthetase bind the tRNA that is essential for the genetic encoding of pyrrolysine. J. Biol. Chem. 287, 32738–32746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herring, S. et al. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity. FEBS Lett. 581, 3197–3203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yanagisawa, T., Ishii, R., Fukunaga, R., Nureki, O. & Yokoyama, S. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 1031–1033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kavran, J.M. et al. Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc. Natl. Acad. Sci. USA 104, 11268–11273 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nozawa, K. et al. Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Esvelt, K.M., Carlson, J.C. & Liu, D.R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Badran, A.H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dickinson, B.C., Packer, M.S., Badran, A.H. & Liu, D.R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Bryson, D. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem. Biol. 13 http://dx.doi.org/10.1038/nchembio.2474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer, J.R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hammerling, M.J. et al. Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. Nat. Chem. Biol. 10, 178–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Badran, A.H. & Liu, D.R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Mogk, A. et al. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem. 278, 17615–17624 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto, H. et al. 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proc. Natl. Acad. Sci. USA 113, E1180–E1189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Owens, A.E., Grasso, K.T., Ziegler, C.A. & Fasan, R. Two-tier screening platform for directed evolution of aminoacyl-tRNA synthetases with enhanced stop codon suppression efficiency. ChemBioChem 18, 1109–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yanagisawa, T. et al. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nɛ-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem. Biol. 15, 1187–1197 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Sorokin, D.Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Donoghue, P., Ling, J., Wang, Y.S. & Söll, D. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9, 594–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolfson, A.D., Pleiss, J.A. & Uhlenbeck, O.C. A new assay for tRNA aminoacylation kinetics. RNA 4, 1019–1023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schachtele, C.F., Anderson, D.L. & Rogers, P. Mechanism of canavanine death in Escherichia coli. II. Membrane-bound canavanyl-protein and nuclear disruption. J. Mol. Biol. 33, 861–872 (1968).

    Article  CAS  PubMed  Google Scholar 

  31. Fan, C., Ho, J.M.L., Chirathivat, N., Söll, D. & Wang, Y.S. Exploring the substrate range of wild-type aminoacyl-tRNA synthetases. ChemBioChem 15, 1805–1809 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong, K.W. et al. Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase. EMBO J. 15, 1983–1991 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gresham, D. & Dunham, M.J. The enduring utility of continuous culturing in experimental evolution. Genomics 104 6 Pt A, 399–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dickinson, B.C., Leconte, A.M., Allen, B., Esvelt, K.M. & Liu, D.R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl. Acad. Sci. USA 110, 9007–9012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suzuki, T., Yamashita, K., Tanaka, Y., Tanaka, I. & Yao, M. Crystallization and preliminary X-ray crystallographic analysis of a bacterial Asn-transamidosome. Acta Crystallogr. F Struct. Biol. Commun. 70, 790–793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Easton, L.E., Shibata, Y. & Lukavsky, P.J. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16, 647–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bricogne, G. et al. BUSTER v. 2.10.2 (Global Phasing Ltd., Cambridge, UK, 2016).

  42. Yamashita, K., Zhou, Y., Tanaka, I. & Yao, M. New model-fitting and model-completion programs for automated iterative nucleic acid refinement. Acta Crystallogr. D Biol. Crystallogr. 69, 1171–1179 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. Wong, M.L., Guzei, I.A. & Kiessling, L.L. An asymmetric synthesis of L-pyrrolysine. Org. Lett. 14, 1378–1381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carlson, J.C., Badran, A.H., Guggiana-Nilo, D.A. & Liu, D.R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hubbard, B.P. et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods 12, 939–942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Melnikov and Y. Xiong (Yale University) for insightful discussions and intellectual contributions, A. Shinoda (Paul Scherrer Institute) and K. Yamashita (RIKEN) for advice on structure analysis, and S. Trauger (Small Molecule Mass Spectrometry Laboratory at Harvard University) for providing expertise with intact protein mass spectrometry analysis. This work was supported the US National Institutes of Health (NIH) R01EB022376 and R35GM118062 (to D.R.L.), and R01GM022854 and R35GM122560 (to D.S.), by the Defense Advanced Research Projects Agency N66001-12-C-4207 (to D.R.L.), by the Department of Energy DE-FG02-98ER20311 (to D.S.), and the Howard Hughes Medical Institute. D.I.B is supported by the National Institutes of Health under a Ruth L. Kirschstein National Research Service Award (F32GM106621). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

T.S. purified and crystallized the PylRS–tRNAPyl complexes, solved structures, and analyzed data. C.M. designed the PANCE research, performed experiments, analyzed data, and wrote the manuscript. D.S. designed and supervised the research and wrote the manuscript. D.R.L. designed and supervised the research and edited the manuscript. L.-T.G. designed the chimeric chPylRS variant for evolution in PANCE, performed protein purification and in vitro aminoacylation assays, and analyzed data. J.M.L.H. assisted with design and refinement of PANCE procedure. D.I.B. established initial selection conditions, performed read-through assays, and performed mass spectrometry and western blot analyses. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Dieter Söll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–9, Supplementary Tables 1–4, and Supplementary Note (PDF 1893 kb)

Reporting Summary (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Miller, C., Guo, LT. et al. Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol 13, 1261–1266 (2017). https://doi.org/10.1038/nchembio.2497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing