Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Harnessing yeast organelles for metabolic engineering

Abstract

Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of yeast subcellular compartments.
Figure 2: Partial and complete metabolic pathways targeted to yeast mitochondria.
Figure 3: Compartmentalization of biosynthetic pathways in yeast peroxisomes.
Figure 4: Pathway localization to the yeast ER, Golgi and vacuoles.
Figure 5: Schemes harnessing the yeast cell wall for ethanol production from cellulosic biomass.

Similar content being viewed by others

References

  1. Avalos, J.L., Fink, G.R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335–341 (2013). Mitochondrial compartmentalization of the complete isobutanol pathway by targeting downstream α-ketoacid decarboxylase and alcohol dehydrogenase enzymes to the mitochondria increased isobutanol production by more than three-fold compared to the pathway with these enzymes targeted to the cytosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shiba, Y., Paradise, E.M., Kirby, J., Ro, D.K. & Keasling, J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9, 160–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 272, 51–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqui, M.S., Thodey, K., Trenchard, I. & Smolke, C.D. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res. 12, 144–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Ayer, A. et al. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae. PLoS One 8, e65240 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kerfeld, C.A., Heinhorst, S. & Cannon, G.C. Bacterial microcompartments. Annu. Rev. Microbiol. 64, 391–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Orij, R., Postmus, J., Ter Beek, A., Brul, S. & Smits, G.J. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155, 268–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, J., Dong, L. & Outten, C.E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J. Biol. Chem. 283, 29126–29134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lange, H., Kispal, G. & Lill, R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J. Biol. Chem. 274, 18989–18996 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Mühlenhoff, U. & Lill, R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim. Biophys. Acta 1459, 370–382 (2000).

    Article  PubMed  Google Scholar 

  12. Kohlhaw, G.B. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol. Mol. Biol. Rev. 67, 1–15 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alberts, B. et al. Molecular Biology of the Cell 6th edn. (Garland Science, 2014).

  14. Hurt, E.C., Pesold-Hurt, B., Suda, K., Oppliger, W. & Schatz, G. The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. EMBO J. 4, 2061–2068 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szczebara, F.M. et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21, 143–149 (2003). This study describes the successful engineering of yeast with a biosynthetic hydrocortisone pathway. Expression of eight mammalian proteins, two of which were localized in the mitochondria, and manipulation of five additional genes yielded hydrocortisone as the predominant steroid product.

    Article  CAS  PubMed  Google Scholar 

  16. Miller, W.L. Minireview: regulation of steroidogenesis by electron transfer. Endocrinology 146, 2544–2550 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Dumas, B. et al. 11β-hydroxylase activity in recombinant yeast mitochondria. In vivo conversion of 11-deoxycortisol to hydrocortisone. Eur. J. Biochem. 238, 495–504 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Farhi, M. et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab. Eng. 13, 474–481 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Yuan, J. & Ching, C.B. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions. Metab. Eng. 38, 303–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Westfall, P.J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA 109, E111–E118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lv, X. et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat. Commun. 7, 12851 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, J. & Ching, C.B. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth. Biol. 4, 23–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Lies, D. et al. Reduced by-product accumulation for improved production of isobutanol. US Patent 5,158,404 B2 (2012).

  24. Buelter, T. et al. Engineered microorganisms for the production of one or more target compounds. US Patent Application 2012/0045809 A1 (2012).

  25. Li, S., Liu, L. & Chen, J. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab. Eng. 28, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, G., Liu, L. & Chen, J. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb. Cell Fact. 11, 24 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, X., Dong, X., Wang, Y., Zhao, Z. & Liu, L. Mitochondrial engineering of the TCA cycle for fumarate production. Metab. Eng. 31, 62–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, L., Wei, P., Zang, R., Xu, Z. & Cen, P. High-throughput screening of high-yield colonies of Rhizopus oryzae for enhanced production of fumaric acid. Ann. Microbiol. 60, 287–292 (2010).

    Article  CAS  Google Scholar 

  29. Visser, W. et al. Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 67, 243–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto, K. & Shaw, J.M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. van der Klei, I.J. & Veenhuis, M. Yeast peroxisomes: function and biogenesis of a versatile cell organelle. Trends Microbiol. 5, 502–509 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Rottensteiner, H. & Theodoulou, F.L. The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism. Biochim. Biophys. Acta 1763, 1527–1540 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Saraya, R., Veenhuis, M. & van der Klei, I.J. Peroxisomes as dynamic organelles: peroxisome abundance in yeast. FEBS J. 277, 3279–3288 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Rucktäschel, R., Girzalsky, W. & Erdmann, R. Protein import machineries of peroxisomes. Biochim. Biophys. Acta 1808, 892–900 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Gidijala, L. et al. An engineered yeast efficiently secreting penicillin. PLoS One 4, e8317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, L., Zhang, J. & Chen, W.N. Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9, e84853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo, Y.S., Nicaud, J.M., Van Veldhoven, P.P. & Chardot, T. The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p. Arch. Biochem. Biophys. 407, 32–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Titorenko, V.I., Nicaud, J.M., Wang, H., Chan, H. & Rachubinski, R.A. Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J. Cell Biol. 156, 481–494 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sheng, J., Stevens, J. & Feng, X. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci. Rep. 6, 26884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, P., Qiao, K., Ahn, W.S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. USA 113, 10848–10853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, Y.J. et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138, 15368–15377 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, W.J. et al. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl. Microbiol. Biotechnol. 99, 7481–7494 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Metzger, P. & Largeau, C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66, 486–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Poirier, Y., Erard, N. & MacDonald-Comber Petétot, J.Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. FEMS Microbiol. Lett. 207, 97–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Poirier, Y., Erard, N. & Petétot, J.M. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid β-oxidation. Appl. Environ. Microbiol. 67, 5254–5260 (2001). One of the first reports of pathway compartmentalization in yeast. Harnessing the capacity of peroxisomes for β-oxidation of fatty acids, expression of a PHA synthase targeted to peroxisomes enabled the accumulation of medium-chain length (mcl) polyhydroxyalkanoates (PHAs) whose monomer composition corresponded to identity of the fatty acid added to the medium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, B., Carlson, R. & Srienc, F. Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 536–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, C., Qi, Q., Madzak, C. & Lin, C.S. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. J. Ind. Microbiol. Biotechnol. 42, 1255–1262 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Haddouche, R. et al. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards β-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res. 10, 917–927 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, P.C., Yoon, Yg. & Schmidt-Dannert, C. Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris. J. Biotechnol. 140, 227–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Bhataya, A., Schmidt-Dannert, C. & Lee, P.C. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem. 44, 1095–1102 (2009).

    Article  CAS  Google Scholar 

  51. van der Klei, I.J., Harder, W. & Veenhuis, M. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 7, 195–209 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. DeLoache, W.C., Russ, Z.N. & Dueber, J.E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7, 11152 (2016). This study lays the groundwork for repurposing yeast organelles to compartmentalize metabolic pathways. Focusing on the peroxisome, the authors developed an assay for cargo import, measured membrane permeability, and identified an amino acid linker that enhances targeting of heterologous enzymes to the organelle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tu, B.P. & Weissman, J.S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341–346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 19, 207–215 (2004).

    CAS  Google Scholar 

  55. Young, B.P., Craven, R.A., Reid, P.J., Willer, M. & Stirling, C.J. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J. 20, 262–271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Banfield, D.K. Mechanisms of protein retention in the Golgi. Cold Spring Harb. Perspect. Biol. 3, a005264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thodey, K., Galanie, S. & Smolke, C.D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10, 837–844 (2014). A report describing the engineering of yeast with a heterologous pathway for opioid production. Targeting one of the enzymes in the biosynthetic pathway to the ER allowed more time for spontaneous substrate rearrangement before enzymatic conversion, thereby improving titer and specificity for morphine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, B.K. et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. USA 100, 5022–5027 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ballou, C.E. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol. 185, 440–470 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Hamilton, S.R. et al. Production of complex human glycoproteins in yeast. Science 301, 1244–1246 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Vervecken, W. et al. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70, 2639–2646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bobrowicz, P. et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14, 757–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Hamilton, S.R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006). A report summarizing the successful culmination of efforts to produce humanized, terminally sialylated complex glycoproteins with therapeutic utility in yeast. After knocking out genes involved in yeast glycosylation, authors introduced heterologous mannosidases, glycosyltransferases, nucleotide sugar transporters, and five enzymes enabling the addition of a terminal sialic acid, all targeted to the ER or Golgi.

    Article  CAS  PubMed  Google Scholar 

  64. Li, H. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24, 210–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Papanikou, E. & Glick, B.S. The yeast Golgi apparatus: insights and mysteries. FEBS Lett. 583, 3746–3751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, L., Horstmann, H., Ng, C. & Hong, W. Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J. Cell Sci. 114, 4543–4555 (2001).

    CAS  PubMed  Google Scholar 

  67. Guo, Y. & Linstedt, A.D. COPII-Golgi protein interactions regulate COPII coat assembly and Golgi size. J. Cell Biol. 174, 53–63 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klionsky, D.J., Herman, P.K. & Emr, S.D. The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54, 266–292 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, S.C. & Kane, P.M. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 1793, 650–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Farooqui, J.Z., Lee, H.W., Kim, S. & Paik, W.K. Studies on compartmentation of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes. Biochim. Biophys. Acta 757, 342–351 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Wada, Y. & Anraku, Y. Chemiosmotic coupling of ion transport in the yeast vacuole: its role in acidification inside organelles. J. Bioenerg. Biomembr. 26, 631–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Bayer, T.S. et al. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131, 6508–6515 (2009). Taking advantage of pools of halide ions and SAM in the yeast vacuole, the authors targeted a heterologous methyl halide transferase enzyme to the organelle, increasing the rate of methyl iodide production 1.5-fold. In co-culture with a cellulolytic bacterium, this engineered yeast strain was capable of methyl halide production from unprocessed cellulosic biomass.

    Article  CAS  PubMed  Google Scholar 

  73. Wuosmaa, A.M. & Hager, L.P. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249, 160–162 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, J.-P. et al. An effective strategy for the co-production of S-adenosyl-L-methionine and glutathione by fed-batch fermentation. Biochem. Eng. J. 21, 19–25 (2004).

    Article  CAS  Google Scholar 

  75. Chan, S.Y. & Appling, D.R. Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J. Biol. Chem. 278, 43051–43059 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Armstrong, J. Yeast vacuoles: more than a model lysosome. Trends Cell Biol. 20, 580–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Bayer, M.J., Reese, C., Buhler, S., Peters, C. & Mayer, A. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J. Cell Biol. 162, 211–222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smits, G.J., Kapteyn, J.C., van den Ende, H. & Klis, F.M. Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2, 348–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Pepper, L.R., Cho, Y.K., Boder, E.T. & Shusta, E.V. A decade of yeast surface display technology: where are we now? Comb. Chem. High Throughput Screen. 11, 127–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hyeon, J.E., Jeon, S.D. & Han, S.O. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol. Adv. 31, 936–944 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Arora, R., Behera, S., Sharma, N.K. & Kumar, S. Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass. Bioresour Bioprocess 2, 1–12 (2015).

    Article  CAS  Google Scholar 

  82. Fujita, Y. et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136–5141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ito, J. et al. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl. Environ. Microbiol. 75, 4149–4154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yanase, S. et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 88, 381–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Wen, F., Sun, J. & Zhao, H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76, 1251–1260 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Tsai, S.L., DaSilva, N.A. & Chen, W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth. Biol. 2, 14–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Fan, L.H., Zhang, Z.J., Yu, X.Y., Xue, Y.X. & Tan, T.W. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. USA 109, 13260–13265 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liang, Y., Si, T., Ang, E.L. & Zhao, H. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80, 6677–6684 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, J., Wen, F., Si, T., Xu, J.H. & Zhao, H. Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl. Environ. Microbiol. 78, 3837–3845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Srikrishnan, S., Chen, W. & Da Silva, N.A. Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnol. Bioeng. 110, 275–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Paye, J.M. et al. Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol. Biofuels 9, 8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reider Apel, A. et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 45, 496–508 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Pollard, V.W. et al. A novel receptor-mediated nuclear protein import pathway. Cell 86, 985–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Hector, R.E., Qureshi, N., Hughes, S.R. & Cotta, M.A. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 80, 675–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Walther, T.C. & Farese, R.V. Jr. The life of lipid droplets. Biochim. Biophys. Acta 1791, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Ingelmo-Torres, M. et al. Hydrophobic and basic domains target proteins to lipid droplets. Traffic 10, 1785–1801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rowe, E.R. et al. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1-3. J. Biol. Chem. 291, 6664–6678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, J.-L., Zhu, J. & Wheeldon, I. Synthetic protein scaffolds for biosynthetic pathway colocalization on lipid droplet membranes. ACS Synth. Biol. (2017).

  99. Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reijns, M.A., Alexander, R.D., Spiller, M.P. & Beggs, J.D. A role for Q/N-rich aggregation-prone regions in P-body localization. J. Cell Sci. 121, 2463–2472 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.A. is supported by grants from Princeton University and the Andlinger Center for Energy and the Environment, as well as by the Alfred P. Sloan Foundation. S.K.H. is supported by the NSF Graduate Research Fellowship Program (grant #DGE-1656466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L Avalos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, S., Avalos, J. Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 13, 823–832 (2017). https://doi.org/10.1038/nchembio.2429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2429

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research