Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Engineering RGB color vision into Escherichia coli

Abstract

Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RGB system in Escherichia coli.
Figure 2: Color photography by Escherichia coli.
Figure 3: Three-color control of metabolic flux to acetate.

Similar content being viewed by others

References

  1. Deisseroth, K. Nat. Methods 8, 26–29 (2011).

    Article  CAS  Google Scholar 

  2. Bacchus, W. & Fussenegger, M. Curr. Opin. Biotechnol. 23, 695–702 (2012).

    Article  CAS  Google Scholar 

  3. Segall-Shapiro, T.H., Meyer, A.J., Ellington, A.D., Sontag, E.D. & Voigt, C.A.A. Mol. Syst. Biol. 10, 742 (2014).

    Article  Google Scholar 

  4. Gambetta, G.A. & Lagarias, J.C. Proc. Natl. Acad. Sci. USA 98, 10566–10571 (2001).

    Article  CAS  Google Scholar 

  5. Levskaya, A. et al. Nature 438, 441–442 (2005).

    Article  CAS  Google Scholar 

  6. Rockwell, N.C. & Lagarias, J.C. ChemPhysChem 11, 1172–1180 (2010).

    Article  CAS  Google Scholar 

  7. Hirose, Y., Shimada, T., Narikawa, R., Katayama, M. & Ikeuchi, M. Proc. Natl. Acad. Sci. USA 105, 9528–9533 (2008).

    Article  CAS  Google Scholar 

  8. Tabor, J.J., Levskaya, A. & Voigt, C.A. J. Mol. Biol. 405, 315–324 (2011).

    Article  CAS  Google Scholar 

  9. Möglich, A., Ayers, R.A. & Moffat, K. J. Mol. Biol. 385, 1433–1444 (2009).

    Article  Google Scholar 

  10. Stanton, B.C. et al. Nat. Chem. Biol. 10, 99–105 (2014).

    Article  CAS  Google Scholar 

  11. Tabor, J.J. et al. Cell 137, 1272–1281 (2009).

    Article  Google Scholar 

  12. Lou, C., Stanton, B., Chen, Y.J., Munsky, B. & Voigt, C.A. Nat. Biotechnol. 30, 1137–1142 (2012).

    Article  CAS  Google Scholar 

  13. Nielsen, A.A. et al. Science 352, aac7341 (2016).

    Article  Google Scholar 

  14. Sleight, S.C., Bartley, B.A., Lieviant, J.A. & Sauro, H.M. J. Biol. Eng. 4, 12 (2010).

    Article  Google Scholar 

  15. Chen, Y.J. et al. Nat. Methods 10, 659–664 (2013).

    Article  CAS  Google Scholar 

  16. De Mey, M., De Maeseneire, S., Soetaert, W. & Vandamme, E. J. Ind. Microbiol. Biotechnol. 34, 689–700 (2007).

    Article  CAS  Google Scholar 

  17. Qi, L.S. et al. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  18. Purnick, P.E. & Weiss, R. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  Google Scholar 

  19. Rockwell, N.C. et al. Proc. Natl. Acad. Sci. USA 111, 3871–3876 (2014).

    Article  CAS  Google Scholar 

  20. Shimizu-Sato, S., Huq, E., Tepperman, J.M. & Quail, P.H. Nat. Biotechnol. 20, 1041–1044 (2002).

    CAS  Google Scholar 

  21. Buckley, C.E. et al. Dev. Cell 36, 117–126 (2016).

    Article  CAS  Google Scholar 

  22. Lee, J.M., Lee, J., Kim, T. & Lee, S.K. PLoS One 8, e52382 (2013).

    Article  CAS  Google Scholar 

  23. Magaraci, M.S. et al. ACS Synth. Biol. 3, 944–948 (2014).

    Article  CAS  Google Scholar 

  24. Miyake, K. et al. Biotechnol. Biofuels 7, 56 (2014).

    Article  Google Scholar 

  25. Farzadfard, F. & Lu, T.K. Science 346, 1256272 (2014).

    Article  Google Scholar 

  26. Datsenko, K.A. & Wanner, B.L. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  27. Moser, F. et al. ACS Synth. Biol. 1, 555–564 (2012).

    Article  CAS  Google Scholar 

  28. Tabor, J.J. Methods Enzymol. 497, 373–391 (2011).

    Article  CAS  Google Scholar 

  29. Gerhardt, K.P. et al. Sci. Rep. 6, 35363 (2016).

    Article  CAS  Google Scholar 

  30. Schmidl, S.R., Sheth, R.U., Wu, A. & Tabor, J.J. ACS Synth. Biol. 3, 820–831 (2014).

    Article  CAS  Google Scholar 

  31. Ohlendorf, R., Vidavski, R.R., Eldar, A., Moffat, K. & Möglich, A. J. Mol. Biol. 416, 534–542 (2012).

    Article  CAS  Google Scholar 

  32. Tian, T. & Salis, H.M. Nucleic Acids Res. 43, 7137–7151 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. DeLateur and R. Weiss for assistance with fluorescence microscopy and L. Gonzalez for assistance with hardware. This work was supported by US National Science Foundation Synthetic Biology Engineering Research Center (SynBERC EEC0540879), the Office of Naval Research Multidisciplinary University Research Initiative (N00014-11-1-0725 and N00014-13-1-0074), and the National Institutes of Health (R01-GM095765 and R01-GM096164).

Author information

Authors and Affiliations

Authors

Contributions

C.A.V., J.F.-R., and F.M. conceived of the study and designed the experiments. J.F.-R. and F.M. performed the experiments and analyzed the data. M.S. designed and built the genomic gusBC system. C.A.V., J.F.-R., and F.M. wrote the manuscript.

Corresponding author

Correspondence to Christopher A Voigt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Note, Supplementary Table 1 and Supplementary Figures 1–13 (PDF 32038 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Rodriguez, J., Moser, F., Song, M. et al. Engineering RGB color vision into Escherichia coli. Nat Chem Biol 13, 706–708 (2017). https://doi.org/10.1038/nchembio.2390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2390

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research