Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyrones as bacterial signaling molecules

Abstract

Bacteria communicate via small diffusible molecules and thereby mediate group-coordinated behavior, a process referred to as quorum sensing. The prototypical quorum sensing system found in Gram-negative bacteria consists of a LuxI-type autoinducer synthase that produces N-acyl homoserine lactones (AHLs) as signals and a LuxR-type receptor that detects the AHLs to control expression of specific genes. However, many proteobacteria have proteins with homology to LuxR receptors yet lack any cognate LuxI-like AHL synthase. Here we show that in the insect pathogen Photorhabdus luminescens the orphan LuxR-type receptor PluR detects endogenously produced α-pyrones that serve as signaling molecules at low nanomolar concentrations. Additionally, the ketosynthase PpyS was identified as pyrone synthase. Reconstitution of the entire system containing PluR, the PluR-target operon we termed pcf and PpyS in Escherichia coli demonstrated that the cell-cell communication circuit is portable. Our research thus deorphanizes a signaling system and suggests that additional modes of bacterial communication may await discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The orphan LuxR-like receptor PluR regulates expression of the pcfABCDEF operon.
Figure 2: PPY bioactivity and structure. HPLC/MS traces and PpcfA reporter activity of P. luminescens and E. coli culture fluids and pure PPYs.
Figure 3: Pyrone binding by PluR.
Figure 4: Heterologous reconstruction of the PpyS-PluR cell-cell communication circuit using Pcf-derived cell clumping as readout.
Figure 5: Model of PpyS-PluR signaling in P. luminescens.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

Protein Data Bank

References

  1. Waters, C.M. & Bassler, B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    CAS  Google Scholar 

  2. Case, R.J., Labbate, M. & Kjelleberg, S. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J. 2, 345–349 (2008).

    Article  CAS  Google Scholar 

  3. Marchler-Bauer, A. et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41, D348–D352 (2013).

    Article  CAS  Google Scholar 

  4. Fuqua, C. & Greenberg, E.P. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002).

    Article  CAS  Google Scholar 

  5. Fuqua, C. The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J. Bacteriol. 188, 3169–3171 (2006).

    Article  CAS  Google Scholar 

  6. Patankar, A.V. & González, J.F. Orphan LuxR regulators of quorum sensing. FEMS Microbiol. Rev. 33, 739–756 (2009).

    Article  CAS  Google Scholar 

  7. Subramoni, S. & Venturi, V. LuxR-family 'solos': bachelor sensors/regulators of signalling molecules. Microbiology 155, 1377–1385 (2009).

    Article  CAS  Google Scholar 

  8. Ahmer, B.M.M. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52, 933–945 (2004).

    Article  CAS  Google Scholar 

  9. Ferluga, S., Bigirimana, J., Höfte, M. & Venturi, V. A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Mol. Plant Pathol. 8, 529–538 (2007).

    Article  CAS  Google Scholar 

  10. González, J.F. & Venturi, V. A novel widespread interkingdom signaling circuit. Trends Plant Sci. 18, 167–174 (2013).

    Article  Google Scholar 

  11. Heermann, R. & Fuchs, T.M. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 9, 40 (2008).

    Article  Google Scholar 

  12. Forst, S., Dowds, B., Boemare, N. & Stackebrandt, E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 47–72 (1997).

    Article  CAS  Google Scholar 

  13. Waterfield, N.R., Ciche, T. & Clarke, D.J. Photorhabdus and a host of hosts. Annu. Rev. Microbiol. 63, 557–574 (2009).

    Article  CAS  Google Scholar 

  14. Reimer, D., Pos, K.M., Thines, M., Grün, P. & Bode, H.B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat. Chem. Biol. 7, 888–890 (2011).

    Article  CAS  Google Scholar 

  15. Chugani, S.A. et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 2752–2757 (2001).

    Article  CAS  Google Scholar 

  16. Zou, Y. & Nair, S.K. Molecular basis for the recognition of structurally distinct autoinducer mimics by the Pseudomonas aeruginosa LasR quorum-sensing signaling receptor. Chem. Biol. 16, 961–970 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, R.-G. et al. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417, 971–974 (2002); erratum 476, 240 (2011).

    Article  CAS  Google Scholar 

  18. Lintz, M.J., Oinuma, K.-I., Wysoczynski, C.L., Greenberg, E.P. & Churchill, M.E.A. Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. USA 108, 15763–15768 (2011).

    Article  CAS  Google Scholar 

  19. Erol, O. et al. Biosynthesis of the myxobacterial antibiotic corallopyronin A. ChemBioChem 11, 1253–1265 (2010).

    Article  CAS  Google Scholar 

  20. Joyce, S.A. et al. Bacterial biosynthesis of a multipotent stilbene. Angew. Chem. Int. Edn Engl. 47, 1942–1945 (2008).

    Article  CAS  Google Scholar 

  21. Brachmann, A.O. et al. Reciprocal crosstalk between fatty acid and antibiotic biosynthesis in a nematode symbiont. Angew. Chem. Int. Edn. Engl. 51, 12086–12089 (2012).

    Article  CAS  Google Scholar 

  22. Goblirsch, B.R., Frias, J.A., Wackett, L.P. & Wilmot, C.M. Crystal structures of Xanthomonas campestris OleA reveal features that promote head-to-head condensation of two long-chain fatty acids. Biochemistry 51, 4138–4146 (2012).

    Article  CAS  Google Scholar 

  23. Karlson, P. & Lüscher, M. Pheromones: a new term for a class of biologically active substances. Nature 183, 55–56 (1959).

    Article  CAS  Google Scholar 

  24. Duchaud, E. et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21, 1307–1313 (2003).

    Article  CAS  Google Scholar 

  25. Daborn, P.J. et al. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc. Natl. Acad. Sci. USA 99, 10742–10747 (2002).

    Article  CAS  Google Scholar 

  26. Chemler, J.A. et al. Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. J. Am. Chem. Soc. 134, 7359–7366 (2012).

    Article  CAS  Google Scholar 

  27. Song, L. et al. Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 128, 14754–14755 (2006).

    Article  CAS  Google Scholar 

  28. Aoki, Y., Matsumoto, D., Kawaide, H. & Natsume, M. Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2). J. Antibiot. (Tokyo) 64, 607–611 (2011).

    Article  CAS  Google Scholar 

  29. Chu, M. et al. Structure of Sch 419560, a novel α-pyrone antibiotic produced by Pseudomonas fluorescens. J. Antibiot. (Tokyo) 55, 215–218 (2002).

    Article  CAS  Google Scholar 

  30. Kong, F., Singh, M.P. & Carter, G.T. Pseudopyronines A and B, α-pyrones produced by a marine Pseudomonas sp. F92S91, and evidence for the conversion of 4-hydroxy-α-pyrone to 3-furanone. J. Nat. Prod. 68, 920–923 (2005).

    Article  CAS  Google Scholar 

  31. Elbandy, M. et al. α-Pyrones and yellow pigments from the sponge-derived fungus Paecilomyces lilacinus. Bull. Korean Chem. Soc. 30, 188–192 (2009).

    Article  CAS  Google Scholar 

  32. Grundmann, F. et al. Identification and isolation of insecticidal oxazoles from Pseudomonas spp. Beilstein J. Org. Chem. 8, 749–752 (2012).

    Article  CAS  Google Scholar 

  33. Swem, L.R. et al. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol. Cell 35, 143–153 (2009).

    Article  CAS  Google Scholar 

  34. Bahrani, F.K., Sansonetti, P.J. & Parsot, C. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect. Immun. 65, 4005–4010 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    CAS  Google Scholar 

  36. Weber, K. & Osborn, M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412 (1969).

    CAS  PubMed  Google Scholar 

  37. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  38. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  39. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) Method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  40. Sherlock, O., Schembri, M.A., Reisner, A. & Klemm, P. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J. Bacteriol. 186, 8058–8065 (2004).

    Article  CAS  Google Scholar 

  41. Bland, J.M. & Altmann, D.G. The logrank test. Br. Med. J. 328, 1073 (2004).

    Article  Google Scholar 

  42. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  43. Fechteler, T., Dengler, U. & Schomburg, D. Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria. J. Mol. Biol. 253, 114–131 (1995).

    Article  CAS  Google Scholar 

  44. Levitt, M. & Sharon, R. Accurate simulation of protein dynamics in solution. Proc. Natl. Acad. Sci. USA 85, 7557–7561 (1988).

    Article  CAS  Google Scholar 

  45. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Article  CAS  Google Scholar 

  46. Korb, O., Stützle, T. & Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 49, 84–96 (2009).

    Article  CAS  Google Scholar 

  47. Corbeil, C.R., Williams, C.I. & Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des. 26, 775–786 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Heermann lab was financially supported by the Deutsche Forschungsgemeinschaft ((DFG) HE 5247/4-1 and SPP 1617). Work in the Bode lab was supported by the DFG (SPP 1617) and a European Research Council starting grant under grant agreement no. 311477. We thank K. Jung for many helpful scientific discussions; S. Scheu and P. Grün for excellent technical assistance; Q. Zhou for help with HPLC/MS analysis; E.A. Alonso and F.I. Nollmann for help with the PPY production kinetics, S. Kinski for help with ketosynthase mutant construction; and H. Janosz for generation of E. coli insect pathogenicity assays. We are grateful to M. Schobert (Braunschweig) for providing E. coli strain ST18, H. Jung (München) for providing plasmid pUC19-Kan and H. Schweizer (Fort Collins, Colorado) for providing the Tn7 plasmids.

Author information

Authors and Affiliations

Authors

Contributions

A.O.B. performed PPY isolation, structure elucidation and quantification and identified ppyS. S.B. performed qRT-PCR, analyzed and quantified PPY bioactivity and specificity for PluR, performed cell clumping assays, generated amino acid replacements in PluR and measured the influence on pyrone sensing. Y.K. constructed PPY-producing E. coli strains. D.K. modeled PluR structure and performed PPY docking and in silico mutagenesis. I.H. performed two-dimensional PAGE, northern blot analyses and Photorhabdus pathogenicity assays. C.M. characterized chemical properties of the PluR signal and performed first E. coli cell clumping assays. K.S. performed preliminary fractionations of P. luminescens supernatants via HPLC and analyzed them for PluR-signal presence. H.B.B. and R.H. coordinated and designed the experiments, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Helge B Bode or Ralf Heermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Results, Supplementary Tables 1-8 and Supplementary Figures 1-17 (PDF 19305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brachmann, A., Brameyer, S., Kresovic, D. et al. Pyrones as bacterial signaling molecules. Nat Chem Biol 9, 573–578 (2013). https://doi.org/10.1038/nchembio.1295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1295

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology